Show simple item record

dc.contributor.authorHopper, Richard
dc.date.accessioned2010-02-02T10:38:33Z
dc.date.available2010-02-02T10:38:33Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/2086/3315
dc.description.abstractSelf-heating can have a detrimental effect on the performance and reliability of high power microwave devices. In this work, the thermal performance of the gallium arsenide (GaAs) Gunn diode was studied. Infrared (IR) thermal microscopy was used to measure the peak operating temperature of the graded-gap structured device. Temperature measurements were experimentally validated using micro-thermocouple probing and compared to values obtained from a standard 1D thermal resistance model. Thermal analysis of the conventionally structured Gunn diode was also undertaken using high resolution micro-Raman temperature profiling, IR thermal microscopy and electro/thermal finite element modeling. The accuracy of conventional IR temperature measurements, made on semiconductor devices, was investigated in detail. Significant temperature errors were shown to occur in IR temperature measurements made on IR transparent semiconductors layers and low emissivity/highly reflective metals. A new technique, employing spherical carbon microparticles, was developed to improve the measurement accuracy on such surfaces. The new ‘IR microparticle’ technique can be used with existing IR microscopes and potentially removes the need to coat a device with a high emissivity layer, which causes damage and heat spreading.en
dc.language.isoenen
dc.publisherDe Montfort Universityen
dc.subjectmeasurementen
dc.subjecttemperature measurementen
dc.subjectGunn diodeen
dc.subjectmicro-particleen
dc.titleAccurate temperature measurements on semiconductor devices.en
dc.typeThesis or dissertationen
dc.publisher.departmentFaculty of Technologyen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhDen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record