• Login
    View Item 
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Computer Science and Informatics
    • View Item
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Computer Science and Informatics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems

    Thumbnail
    View/Open
    Main article (1.924Mb)
    Date
    2019-12
    Author
    Chen, Qingda;
    Ding, Jinliang;
    Yang, Shengxiang;
    Chai, Tianyou
    Metadata
    Show attachments and full item record
    Abstract
    To promote research on dynamic constrained multiobjective optimization, we first propose a group of generic test problems with challenging characteristics, including different modes of the true Pareto front (e.g., convexity–concavity and connectedness–disconnectedness) and the changing feasible region. Subsequently, motivated by the challenges presented by dynamism and constraints, we design a dynamic constrained multiobjective optimization algorithm with a nondominated solution selection operator, a mating selection strategy, a population selection operator, a change detection method, and a change response strategy. The designed nondominated solution selection operator can obtain a nondominated population with diversity when the environment changes. The mating selection strategy and population selection operator can adaptively handle infeasible solutions. If a change is detected, the proposed change response strategy reuses some portion of the old solutions in combination with randomly generated solutions to reinitialize the population, and a steady-state update method is designed to improve the retained previous solutions. Experimental results show that the proposed test problems can be used to clearly distinguish the performance of algorithms, and that the proposed algorithm is very competitive for solving dynamic constrained multiobjective optimization problems in comparison with state-of-the-art algorithms.
    Description
    The file attached to this record is the author's final peer reviewed version.
    Citation : Chen, Q., Ding, J., Yang, S., and Chai, T. (2019) A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, in press.
    URI
    https://dora.dmu.ac.uk/handle/2086/18905
    DOI
    https://doi.org/10.1109/tevc.2019.2958075
    Research Institute : Institute of Artificial Intelligence (IAI)
    Peer Reviewed : Yes
    Collections
    • School of Computer Science and Informatics [2970]

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary
     

     

    Browse

    All of DORACommunities & CollectionsAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission DateThis CollectionAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission Date

    My Account

    Login

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary