Show simple item record

dc.contributor.authorMalekmohamadi, Hossein
dc.contributor.authorPattanajak, Nontawat
dc.contributor.authorBom, Roeland
dc.date.accessioned2019-05-08T10:30:51Z
dc.date.available2019-05-08T10:30:51Z
dc.date.issued2019
dc.identifier.citationMalekmohamadi, H., Pattanajak, N., Roeland, B. (2019) Human Activity Identification in Smart Daily Environments. In: Smart Assisted Living - towards an open smart home infrastructure. Heidelberg: Springer.en
dc.identifier.urihttps://www.dora.dmu.ac.uk/handle/2086/17783
dc.description.abstractResearch in human activity recognition (HAR) benefits many applications such as intelligent surveillance systems to track humans’ abnormal activities. It could also be applied to robots to understand human activity, which improves smart home efficiency and usability. This chapter aims to accurately recognize different sports types in the Sports Video in the Wild data-set (SVW) employing transfer learning. The data-set consists of noisy and similar classes shot in daily environments, not in controlled lab environments. Heretofore, different methods have been used and developed for this purpose. Transfer learning is the process of using pretrained neural networks. The experimental results on different splits of the data-set, size and pre-trained models show that accuracy of 80.7% is achievable. In another experiment, we have used the famous UCF101 dataset which is collected from YouTube and trained a convolutional neural network (CNN) with batch normalization (BN). The achieved accuracy for the test data-set is around 91.2%. One application of the proposed system is to integrate it with a smart home platform to identify sports activities of individuals and track their progress.en
dc.language.isoenen
dc.publisherSpringeren
dc.subjectHARen
dc.subjectCNNen
dc.subjectTransfer Learningen
dc.subjectBatch Normalizationen
dc.subjectDeep Learningen
dc.subjectVGG16en
dc.subjectUCF101en
dc.subjectSVW dataseten
dc.titleHuman Activity Identification in Smart Daily Environmentsen
dc.typeBook chapteren
dc.peerreviewedYesen
dc.funderNo external funderen
dc.cclicenceCC-BY-NCen
dc.date.acceptance2019-03-03
dc.researchinstituteInstitute of Artificial Intelligence (IAI)en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record