Show simple item record

dc.contributor.authorYin, Xin
dc.contributor.authorZhang, Qichun
dc.contributor.authorWang, Hong
dc.contributor.authorDing, Zhengtao
dc.date.accessioned2019-05-07T08:18:11Z
dc.date.available2019-05-07T08:18:11Z
dc.date.issued2019-05-01
dc.identifier.citationYin, X., Zhang, Q., Wang, H. and Ding, Z. (2019) RBFNN-based Minimum Entropy Filtering for a Class of Stochastic Nonlinear Systems. IEEE Transactions on Automatic Control,en
dc.identifier.urihttps://www.dora.dmu.ac.uk/handle/2086/17773
dc.descriptionThe file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.en
dc.description.abstractThis paper presents a novel minimum entropy filter design for a class of stochastic nonlinear systems which are subjected to non-Gaussian noises. Motivated by stochastic distribution control, an output entropy model is developed using RBF neural network while the parameters of the model can be identified by the collected data. Based upon the presented model, the filtering problem has been investigated while the system dynamics have been represented. As the model output is the entropy of the estimation error, the optimal nonlinear filter is obtained based on the Lyapunov design which makes the model output minimum. Moreover, the entropy assignment problem has been discussed as an extension of the presented approach. To verify the presented design procedure, a numerical example is given which illustrates the effectiveness of the presented algorithm. The contributions of this paper can be included as 1) an output entropy model is presented using neural network; 2) a nonlinear filter design algorithm is developed as the main result and 3) a solution of entropy assignment problem is obtained which is an extension of the presented framework.en
dc.language.isoenen
dc.publisherIEEEen
dc.subjectMinimum entropy filteringen
dc.subjectstochastic nonlinear systemsen
dc.subjectnon-Gaussian distributionen
dc.subjectradial basis function neural networken
dc.titleRBFNN-based Minimum Entropy Filtering for a Class of Stochastic Nonlinear Systemsen
dc.typeArticleen
dc.identifier.doihttps://doi.org/10.1109/tac.2019.2914257
dc.peerreviewedYesen
dc.funderNo external funderen
dc.cclicenceCC-BY-NCen
dc.date.acceptance2019-05-01
dc.researchinstituteInstitute of Engineering Sciences (IES)en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record