Show simple item record

dc.contributor.authorOladapo, B.I.en
dc.contributor.authorZahedi, A.en
dc.contributor.authorChaluvadi, Surya C.en
dc.contributor.authorBollapalli, Satya Sen
dc.contributor.authorIsmail, Muhammaden
dc.date.accessioned2018-08-14T10:01:35Z
dc.date.available2018-08-14T10:01:35Z
dc.date.issued2018-07-19
dc.identifier.citationOladapo, B.I.et al. (2018) Model design of a superconducting quantum interference device of magnetic field sensors for magnetocardiography. Biomedical Signal Processing and Control, 46, pp. 116-120en
dc.identifier.urihttp://hdl.handle.net/2086/16452
dc.descriptionCollaboration between De Montfort University and University of Leicester, Leicester, UK The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.en
dc.description.abstractIn recent years, there has been an increase in the study of magnetocardiography (MCG), complementary to electrocardiography (ECG) research, with the purpose of increasing accuracy in the diagnosis of heart and brain pathologies. This research proposes the physical infrastructure of an advanced technology that can be used to obtain heart and brain signals from a specifically designed magnetic field. A generated magnetic sensor is proposed to sense weak magnetic fields in order to detect magnetic heart and brain activity, using interferometry methods. The method of detection of the magnetic field in the sensor, known as a superconducting quantum interference device (SQUID), is found in the interference that occurs during transmission of feeding currents, and the induced currents in the sensor. The sensor consists of two Josephson junctions, connected in parallel. This research presents a fabrication method and the characteristics of thin superconducting films, as an advance in the construction of a SQUID sensor. An ablation chamber is designed, and the deposition of the superconductor on a copper substrate is explored, to obtain thin films at lower cost. The results obtained show good characteristics of superconductivity which can produce a good quality magnetic sensor. There is an intention to further decrease the roughness of the material for the photo lithography process.en
dc.language.isoenen
dc.publisherElsevieren
dc.subjectMagnetic field sensoren
dc.subjectMagnetocardiographyen
dc.subjectElectrocardiographyen
dc.subjectSuperconducting quantum interference deviceen
dc.titleModel design of a superconducting quantum interference device of magnetic field sensors for magnetocardiographyen
dc.typeArticleen
dc.identifier.doihttps://doi.org/10.1016/j.bspc.2018.07.007
dc.peerreviewedYesen
dc.funderHigher Education Innovation Fund (HEIF) of De Montfort Universityen
dc.projectid2017-2018, UK: Research Project No. 0042.07.en
dc.cclicenceCC-BY-NC-NDen
dc.date.acceptance2018-07-10en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record