• Login
    View Item 
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Computer Science and Informatics
    • View Item
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Computer Science and Informatics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effect of diversity maintenance on prediction in dynamic multi-objective optimization

    Thumbnail
    View/Open
    Main article (7.055Mb)
    Date
    2017-05-10
    Author
    Ruan, Gan;
    Yu, Guo;
    Zheng, Jinhua;
    Zou, Juan;
    Yang, Shengxiang
    Metadata
    Show attachments and full item record
    Abstract
    There are many dynamic multi-objective optimization problems (DMOPs) in real-life engineering applications whose objectives change over time. After an environmental change occurs, prediction strategies are commonly used in dynamic multi-objective optimization algorithms to find the new Pareto optimal set (POS). Being able to make more accurate prediction means the algorithm requires fewer computational resources to make the population approximate to the Pareto optimal front (POF). This paper proposes a hybrid diversity maintenance method to improve prediction accuracy. The method consists of three steps, which are implemented after an environmental change. The first step, based on the moving direction of the center points, uses the prediction to relocate a number of solutions close to the new Pareto front. On the basis of self-defined minimum and maximum points of the POS in this paper, the second step applies the gradual search to produce some well-distributed solutions in the decision space so as to compensate for the inaccuracy of the first step, simultaneously and further enhancing the convergence and diversity of the population. In the third step, some diverse individuals are randomly generated within the region of next probable POS, which prompts the diversity of the population. Eventually the prediction becomes more accurate as the solutions with good convergence and diversity are selected after the non-dominated sort on the combined solutions generated by the three steps. Compared with three other prediction methods on a series of test instances, our method is very competitive in convergence and diversity as well as the speed at which it responds to environmental changes.
    Description
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
    Citation : Ruan, G.. Yu, G., Zheng, J., Zou, J. and Yang, S. (2017) The effect of diversity maintenance on prediction in dynamic multi-objective optimization. Applied Soft Computing, 58, pp. 631-647
    URI
    http://hdl.handle.net/2086/14218
    DOI
    https://doi.org/10.1016/j.asoc.2017.05.008
    Research Group : Centre for Computational Intelligence
    Research Institute : Institute of Artificial Intelligence (IAI)
    Peer Reviewed : Yes
    Collections
    • School of Computer Science and Informatics [2968]

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary
     

     

    Browse

    All of DORACommunities & CollectionsAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission DateThis CollectionAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission Date

    My Account

    Login

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary