Steps towards silicon optoelectronics.

De Montfort University Open Research Archive

Show simple item record Starovoytov, Artem 2015-02-26T14:43:46Z 2015-02-26T14:43:46Z 1999
dc.description.abstract This thesis addresses the issue of a potential future microelectronics technology, namely the possibility of utilising the optical properties of nanocrystalline silicon for optoelectronic circuits. The subject is subdivided into three chapters. Chapter 1 is an introduction. It formulates the oncoming problem for microelectronic development, explains the basics of Integrated Optoelectronics, introduces porous silicon as a new light-emitting material and gives a brief review of other competing light-emitting material systems currently under investigation. Examples of existing porous silicon devices are given. Chapter 2 reviews the basic physics relevant to the subject of this thesis and informs on the present situation in this field of research, including both experimental and theoretical knowledge gained up-to-date. The chapter provides the necessary background for correct interpretation of the results reported in Chapter 3 and for a realistic decision on the direction for future work. Chapter 3 describes my own experimental and computational results within the framework of the subject, obtained at De Montfort University. These include: onestep preparation of laterally structured porous silicon with photoluminescence and microscopy characterisation, Raman spectroscopy of porous silicon, a polarisation study of the photoluminescence from porous silicon, computer simulations of the conductivity of two-component media and of laser focused atomic deposition for nanostructure fabrication. Thus, this thesis makes a dual contribution to the chosen field: it summarises the present knowledge on the possibility of utilising optical properties of nanocrystalline silicon in silicon-based electronics, and it reports new results within the framework of the subject. The main conclusion is that due to its promising optoelectronic properties nanocrystalline silicon remains a prospective competitor for the cheapest and fastest microelectronics of the next century. en
dc.language.iso en en
dc.publisher De Montfort University en
dc.subject.ddc 621.381045 530.41 en
dc.subject.lcsh Optoelectronics Solid state physics en
dc.title Steps towards silicon optoelectronics. en
dc.type Thesis or dissertation en
dc.type.qualificationlevel Doctoral en
dc.type.qualificationname PhD en

Files in this item

This item appears in the following Collection(s)

Show simple item record