STEM Conference 2019
Conference programme

30 - 31 January 2019
Millennium Point, Birmingham

#STEMConf19

Delivering next generation higher education in STEM
Advance HE STEM Conference 2019
Delivering Next Generation Higher Education in STEM

30-31 January 2019
Millennium Point, Birmingham UK

Session abstracts

Contents
Day 1, 30 January 2019 ... 6

Session 1, 10:50-11:30.. 6

Session 1.1a: Curiosity and reward: A detective’s game. Neuroscience applications to memory enhancement 6
Session 1.1b: Synoptic assessment of Life Sciences at Brunel University London: Ensuring interdisciplinary education by empowering Level 4 students to read primary research papers that span disciplines.......................... 6
Session 1.2a: Factors impacting on Petroleum Engineering teaching to meet requirement for the hallmarks of a graduate ... 6
Session 1.2b: The Interdisciplinary Birmingham Engineer: Integrated design projects that embed sustainability concepts to inspire and motivate students while improving their employability ... 6
Session 1.3a: Web-based learning and teaching resources for microscopic detection of human parasites 6
Session 1.3b: The development of a flexible work-based degree programme to produce graduate Power Engineers that can successfully navigate the rapidly changing geo-political demands on the UK electrical power industry 7
Session 1.4a: Will a new British Bill of Rights promote a better understanding of equality and diversity? 7
Session 1.4b: TBC .. 7
Session 1.5a: Making virtual reality a reality in STEM education .. 7
Session 1.5b: The impact of digital capabilities on the quality of STEM teaching .. 7
Session 1.6a: Interactive Science at the Universidad Tecnológica of Uruguay: A program based on the STEM model .. 8
Session 1.6b: How do scientists and Science undergraduates read scientific papers? .. 8
Session 1.7a: TBC .. 8
Session 1.7b: Look to the US? Case study of Suffolk Centre for Female Entrepreneurship .. 8
Session 1.8a: Designing experiential assessment and providing meaningful feedback to equip students for leadership and critical thinking .. 8

Session 2, 11:45-12:45.. 9

Session 2.1a: Employability-led assessments .. 9
Session 2.1b: Embedding professional skills education in the Computer Science and Electronic Engineering curriculum: Cultural, organisational and managerial aspects ... 9
Session 2.1c: Employer engagement to engaged employers: Reflections on programme co-design and co-implementation with employers ... 9
Session 2.2a: The use of learning technologies to enhance classroom dialogues .. 9
Session 2.2b: Learning with quizzes .. 9
Session 2.2c: Diagnostic tests and their effectiveness in categorising students ... 10
Session 2.3a: Going paperless: The digital teaching laboratory ... 10
Session 2.3b: When STEM students are offered a blend of digital and non-digital learning materials, what choices do they make, and why? ... 10
Session 2.3c: VISION - Visual Interface for Students to Interpret Online Notes and become scientific writers 10
Session 2.4a: Championing inclusion: Working with students as partners to effectively inform learning and teaching development .. 10
Session 2.4b: Undergraduate sense of belonging in a Science department .. 10
Session 2.4c: How peer/friendship groups form, and their effect on attainment .. 11
Proposition 1
Oral presentation, Auditorium
Sometimes we're guilty of "silo teaching" – focusing on our specific subject alone. Doing so can be detrimental to student experience and also fails to reflect the realities of industry. Modern engineering is complex and interdisciplinary in nature. This presentation explores ways we can use project work to encourage students to work together in different disciplines and cross-pollinate knowledge, gaining real-world experience at the same time. Using a student-led space rocket programme we facilitated in summer 2018 as an example we explore the lessons learnt, the benefits seen, and encourage one and all to think about interdisciplinary ways of working in the future.

Session 4.1b: Peering up: A collaborative approach for teaching mechanical design to Chemical Engineering students
Ms Marsha Maraj, Imperial College London
Proposition 1
Oral presentation, Auditorium
This work examines the experiences of third year Chemical Engineering students studying the mechanical design of pressure vessels. A project-based learning approach allowed students to work collaboratively in teams. Preliminary findings show that a large percentage of students (>80%) felt that this collaboration strongly improved their understanding of mechanical design and contributed to a high academic self-efficacy across associated learning outcomes. Peer interactions throughout the module also led to enhanced transferable skills (notably team working). These results show that collaborative learning in Engineering education can produce more well-rounded graduate profiles; this is important given that engineers will routinely work in interdisciplinary teams to solve complex problems.

Session 4.1c: A structured approach to immersive, team-based, interdisciplinary learning
Mr Justin Siefker and Professor Eva Sorensen, University College London
Proposition 1
Oral presentation, Auditorium
The need for interdisciplinary learning is self-evident as engineers are increasingly tasked to envision, invent, and construct insightful solutions to Grand Challenges, which require evermore creativity and integration. A favoured approach for preparing engineers is immersing the learning experience with fundamentals applied to interdisciplinary practice, enabling learning through discovery of how theoretical concepts practically apply in complex, interdisciplinary scenarios. Unfortunately, preparing such experiences often necessitates educators completing similar journeys of discovery. We present a structured approach for developing and delivering immersive, team-based, interdisciplinary learning experiences to large cohorts, including preparing educators and teaching assistants.

Session 4.2a: How safe is your playground? Analysing soil in Scottish schools
Dr Debbie Willison, University of Strathclyde
Proposition 2
Oral presentation, Connect Event Space
The University of Strathclyde, in partnership with Scottish secondary schools, completed a year-long project, from August 2017 to September 2018, analysing soil samples taken from playgrounds across the nation. Students, primarily 11-13 years old, gained an understanding of Scotland’s environmental heritage and current environmental issues through carrying out their own research and considering this data in a national context. This session will explain how to successfully host a project of this nature and explore suggestions and ideas for delegates to consider in their own context. Benefits and challenges will also be discussed and sources of possible funding will be outlined.

Session 4.2b: Toxicology training to decontaminate environments affected by chemicals
Dr Antonio Peña-Fernández, De Montfort University, Dr Raquel Duarte-Davidson and Dr Stacey Wyke, Public Health England
Proposition 2
Oral presentation, Connect Event Space
Health professionals will be required to have some foundation knowledge in environmental toxicology to combat increasing morbidity/mortality indices due to environmental contamination. However, very little training in these specialised topics is delivered in Human Health Science degrees due to time and curriculum constraints. We have created a short training course that has shown to be effective in providing Pharmacy students with basic skills to tailor a complete protection, decontamination and restoration strategy for environments contaminated by chemicals. The web-based recovery tool to respond to chemical incidents developed by Public Health England would be an effective resource to provide this specific training.