The impact of psychostimulant administration during development on adult brain functions controlling motivation, impulsivity and cognition.

Mathieu Di Miceli

Thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy.

July 2016

Thesis conducted under the supervision of
Dr. Benjamin S. Gronier, first supervisor and
Dr. Tyra S. Zetterström, second supervisor.

Department of Pharmacology,
School of Pharmacy,
De Montfort University,
Leicester, LE1 9BH,
United Kingdom
Abstract

ADHD pharmacotherapy uses methylphenidate (MPH), D-amphetamine (D-amph), two psychostimulants targeting dopamine transporters, or atomoxetine (ATX), specifically targeting norepinephrine transporters. We have assessed the pharmacological mechanisms of these three drugs on the in vitro efflux of neurotransmitters in rat prefrontal cortex (PFC) and striatal slices as well as on the in vivo electrical activities of PFC pyramidal neurons, striatal medium spiny neurons, ventral tegmental area dopamine neurons or dorsal raphe nucleus serotonin neurons, using single cell extracellular electrophysiological recording techniques. We have also tested whether chronic methylphenidate treatment, during either adolescence or adulthood, could have long-lasting consequences on body growth, depression and neuronal functions.

Release experiments showed that all ADHD drugs induce dose-dependent dopamine efflux in both the PFC and striatum, with different efficacies, while only D-amph induced cortical norepinephrine efflux. Atomoxetine induced an unexpected massive dopamine outflow in striatal regions, by mechanisms that depend on physiological parameters.

Our electrophysiological studies indicate that all three drugs equally stimulate the excitability of PFC pyramidal neurons, in basal and NMDA-evoked conditions, when administered acutely (3 mg/kg). While the electrophysiological effects elicited by psychostimulants may be dependent on D₁ receptor activation, those induced by atomoxetine relied on different mechanisms. In the ventral tegmental area (VTA), methylphenidate (2 mg/kg), but not atomoxetine, induced firing and burst activity reductions, through dopamine D₂ autoreceptor activation. Reversal of such effects (eticlopride 0.2 mg/kg) revealed an excitatory effect of methylphenidate on midbrain dopamine neurons that appear to be dependent on glutamate pathways and the combination of D₁ and alpha-1 receptors. Finally, acute intraperitoneal psychostimulant
injections increased vertical locomotor activity as well as NMDA$_{2B}$ protein expression in the striatum.

Some animals chronically treated with intraperitoneal administrations (methylphenidate 4 mg/kg/day or saline 1.2 ml/kg/day) showed decreased body weight gain. Voluntary oral methylphenidate intake induces desensitisation to subsequent intravenous methylphenidate challenges, without altering dopamine D$_2$ receptor plasticity. Significant decreases in striatal NMDA$_{2B}$ protein expression were observed in animals chronically treated.

After adolescent MPH treatment, midbrain dopaminergic neurons do not display either desensitisation or sensitisation to intravenous methylphenidate re-challenges. However, partial dopamine D$_2$ receptor desensitisation was observed in midbrain dopamine neurons. Using behavioural experiments, cross-sensitisation between adolescent methylphenidate exposure and later-life D-amphetamine challenge was observed. Significant decreases in striatal NMDA$_{2B}$ protein expression were observed in animals chronically treated, while striatal medium spiny neurons showed decreased sensitivities to locally applied NMDA and dopamine.

While caffeine is devoid of action on baseline spike generation and burst activity of dopamine neurons, nicotine induces either firing rate enhancement, firing rate reduction, or has no consequences. Adolescent methylphenidate treatment leads to decreased neuronal sensitivities to the combination of nicotine, MPH and eticlopride, compared to controls. Finally, nicotine partially prevented D-amphetamine-induced increase of rearing activities.

Our results show that increases in the excitability of PFC neurons in basal conditions and via NMDA receptor activation may be involved in the therapeutic response to ADHD drugs. Long-term consequences were observed after psychostimulant exposure. Such novel findings strengthen the mixed hypothesis in ADHD, whereby both dopamine and glutamate neurotransmissions are dysregulated. Therefore, ADHD therapy may now focus on adequate balancing between glutamate and dopamine.
Acknowledgements

First I would like to thank De Montfort University for allowing me to follow this Ph-D program, for paying my tuition fees and giving me financial support in the form of a stipend. For the last 3 years, it has been a real pleasure to come to the University and work with such amazing colleagues, to all of whom I express my heartfelt gratitude.

I would also like to thank all the members of staff involved in the radioactivity work: Liz O’Brien, for all the help she provided regarding isotope regulations, radioactivity handling as well as laboratory health and safety; Nazmin Juma and Dr. Ketan Ruparelia for their patience in collecting the radioactive waste and pointing out some mistakes they found in my log book entries while doing so.

This work could never have been done without technical support from the B.S.U. team, including Anita O’Donoghue, Stephen Bowen (†) and Mike Storer. Their assistance in maintaining high standards within the animal unit has allowed us to save time and effort, but has also had an impact on the quality of work that we were able to perform.

I would like to thank all the technicians in room 2.17 for their immense technical support, in particular David Reeder, Amrat Khorana, Claire West, Jo Tonkin and Leonie Hough. By providing gallons of purified water as well as many consumables, this work could not have been done without their almost daily assistance.

On more than one occasion, I have found myself thinking about all the animals used during the last 3 years. I would like to emphasise the help they provide by increasing our knowledge in biology and Science. Memento Mori.

I would also like to express my gratitude to my second supervisor, Dr. Tyra Zetterström for her support and ideas from start to end of this Ph-D.

Last but of great importance, I personally thank my supervisor, Dr. Benjamin Gronier, for his three years of support, his extensive scientific knowledge and for increasing my research skills. Pour tout cela et tout le reste, merci beaucoup !

À ma famille, sans laquelle je n’aurais jamais pu arriver jusqu’au doctorat.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD</td>
<td>Attention Deficit and Hyperactivity Disorder</td>
</tr>
<tr>
<td>AMPA</td>
<td>2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid</td>
</tr>
<tr>
<td>ATX</td>
<td>Atomoxetine</td>
</tr>
<tr>
<td>BAPTA-AM</td>
<td>Bis(aminophenoxy)ethane-N-tetraacetic acid-acetoxymethyl ester</td>
</tr>
<tr>
<td>CNVs</td>
<td>Copy number variation(s)</td>
</tr>
<tr>
<td>D-amph</td>
<td>Dextro-amphetamine</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>DAT</td>
<td>Dopamine transporter</td>
</tr>
<tr>
<td>EC<sub>50</sub></td>
<td>Dose inducing 50% of maximum response</td>
</tr>
<tr>
<td>EPSCs</td>
<td>Excitatory post-synaptic currents</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional magnetic resonance imaging</td>
</tr>
<tr>
<td>g - kg</td>
<td>Gram - kilogram</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-amino-butyric acid</td>
</tr>
<tr>
<td>GlyT<sub>1</sub></td>
<td>Glycine reuptake transporter 1</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Dose inducing 50% of maximum inhibition</td>
</tr>
<tr>
<td>i.e.</td>
<td>id est</td>
</tr>
<tr>
<td>IPSCs</td>
<td>Inhibitory post-synaptic currents</td>
</tr>
<tr>
<td>K<sub>ATP</sub></td>
<td>ATP-gated potassium channel</td>
</tr>
<tr>
<td>K<sub>i</sub></td>
<td>Inhibitory constant, binding affinity</td>
</tr>
<tr>
<td>K<sub>IR</sub></td>
<td>Inwardly rectifying potassium channel</td>
</tr>
<tr>
<td>Kv<sub>1</sub></td>
<td>Voltage-gated potassium channel, family 1</td>
</tr>
<tr>
<td>l</td>
<td>Litre</td>
</tr>
<tr>
<td>LTD</td>
<td>Long-term depression</td>
</tr>
<tr>
<td>LTP</td>
<td>Long-term potentiation</td>
</tr>
<tr>
<td>mEq</td>
<td>Milliequivalent</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MΩ</td>
<td>Megaohm</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>MPH</td>
<td>Methylphenidate</td>
</tr>
<tr>
<td>ms</td>
<td>Millisecond</td>
</tr>
<tr>
<td>MSN</td>
<td>Medium spiny neurons</td>
</tr>
<tr>
<td>nA</td>
<td>Nanoampere</td>
</tr>
<tr>
<td>NET</td>
<td>Norepinephrine transporter</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>PFC</td>
<td>Prefrontal cortex</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotations per minute</td>
</tr>
<tr>
<td>s - sec</td>
<td>Second</td>
</tr>
<tr>
<td>SERT</td>
<td>Serotonin transporter</td>
</tr>
<tr>
<td>SHR</td>
<td>Spontaneously hypertensive rat</td>
</tr>
<tr>
<td>SNPs</td>
<td>Single nucleotide polymorphism(s)</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>VMAT<sub>2</sub></td>
<td>Vesicular monoamine transporter 2</td>
</tr>
<tr>
<td>VTA</td>
<td>Ventral tegmental area</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume to volume ratio</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight to volume ratio</td>
</tr>
</tbody>
</table>
The impact of psychostimulant administration during development on adult brain functions controlling motivation, impulsivity and cognition. .. i

Abstract ... i

Acknowledgements ... iii

Abbreviations .. iv

Table of content ... vi

Table of figures .. xi

List of tables ... xvii

Introduction ... 1

ADHD: statistics and symptoms ... 1

Aetiology of ADHD .. 2

Neurotransmitters and brain regions implicated in ADHD .. 4

ADHD drugs pharmacology .. 6

Methylphenidate .. 6

Amphetamines ... 7

Atomoxetine ... 8

The new ADHD drug Metadoxine ... 9

Efficiency, safety and side effects of ADHD drugs ... 9

Methylphenidate as a drug of abuse, misuse and addiction ... 12

Pharmacology of ADHD drugs in animal studies ... 13

Freely available psychostimulants .. 17

A link between ADHD and substance abuse? .. 19

Animal models of ADHD .. 20

Objectives ... 21

Chapter I – ADHD drugs induce in vitro neurotransmitter release. ... 22

I-1- Introduction .. 22

I-2- Material and Method ... 24

I-2-A- Subjects .. 24

I-2-B- In vitro radio-labelled neurotransmitter efflux ... 24

I-2-C- Drugs ... 26
Chapter III – Excitatory glutamate components involved in the
electrophysiological response of ventral tegmental area dopamine neurons to acute
methylphenidate .. 96
 III-1- Introduction ... 96
 III-2- Material and Methods .. 98
 III-2-A- Subjects .. 98
 III-2-B- In vivo extracellular single unit electrophysiology ... 98
 III-2-C- Prefrontal cortex inhibition ... 99
 III-2-D- Data analysis .. 100
 III-3- Results .. 100
 III-3-A- Methylphenidate, but not atomoxetine, decreases firing and burst activities of
 VTA dopamine neurons in a dose-dependent manner .. 100
 III-3-B- Methylphenidate exerts hidden excitatory effects on dopamine neurons ... 104
 III-3-C- The excitatory component of MPH depends upon both D{sub 1} and alpha-1
 receptors .. 106
 III-3-D- Influences of local catecholamines ... 110
 III-3-E- Importance of glutamatergic neurotransmission and NMDA receptors in
 MPH-induced excitatory effects .. 112
 III-3-F- Role of the PFC in MPH-induced excitatory effects ... 114
 III-4- Discussion .. 115

Chapter IV – The impact of chronic methylphenidate administration on adult
animals .. 121
 IV-1- Introduction ... 121
 IV-2- Material and Method .. 122
 IV-2-A- Subjects and groups ... 122
 IV-2-B- In vivo extracellular single unit electrophysiology ... 123
 IV-2-C- Evaluation of glycaemia and growth ... 123
 IV-2-D- In vitro {superscript 3}H-dopamine release ... 124
 IV-2-E- Western Blots .. 124
 IV-2-F- Data analysis .. 124
 IV-3- Results .. 125
 IV-3-A- Effects of treatments on growth and blood sugar levels .. 125
 IV-3-B- Chronic methylphenidate induces MPH-insensitivity in VTA dopamine
 neurons .. 126
IV-3-C- Chronic methylphenidate does not modify baseline VTA neuronal population activities but triggers burst activity increases following intravenous MPH and D2 blockade challenges ... 129

IV-3-D- Chronic methylphenidate leads to dopamine transporter desensitisation rather than D2 receptor desensitisation ... 130

IV-3-E- The impact of chronic methylphenidate on the spontaneous and glutamate-induced firing activity of PFC pyramidal neurons, striatal MSN and NMDA2B protein expression .. 132

IV-4- Discussion .. 136

Chapter V – The long-term consequences of methylphenidate treatment during adolescence on adult brain functions ... 144

V-1- Introduction .. 144

V-2- Material and Methods .. 145
 V-2-A- Subjects and groups ... 145
 V-2-B- Sucrose preference test .. 146
 V-2-C- In vivo extracellular single unit electrophysiology .. 148

V-3- Results ... 149
 V-3-A- Adolescent treatment with methylphenidate does not induce growth deficits ... 149
 V-3-B- Adolescent MPH treatment and depressive-like phenotypes during adulthood ... 150

V-3-C- Adolescent MPH leads to long-term adaptations in serotonin neurons in adulthood ... 153

V-3-D- Adolescent MPH leads to long-term adaptations in midbrain dopamine neurons in adulthood ... 154

V-3-E- Adolescent MPH induces partial dopamine D2 receptor desensitisation in adulthood ... 155

V-3-F- Adolescent MPH does not modify NMDAR2B protein expression in the PFC at adulthood but induces behavioural sensitisation to D-amphetamine ... 157

V-4- Discussion ... 159

Chapter VI – The conjunction of caffeine or nicotine, two other freely available psychostimulants, with methylphenidate ... 167

VI-1- Introduction .. 167

VI-2- Material and Methods .. 169
 VI-2-A- Subjects and groups ... 169

ix
VI-2-B- *In vivo* extracellular single unit electrophysiology 170
VI-2-C- Behaviour .. 170
VI-2-D Data analysis .. 170

VI-3- Results .. 170

VI-3-A- Caffeine does not change baseline firing or burst activity of VTA dopamine neurons, or the efficiency of the combination of both MPH and eticlopride 170
VI-3-B- The distinction between three neuronal populations following nicotine administration ... 173
VI-3-C- Nicotine does not change the efficiency of the combination of both MPH and eticlopride ... 176
VI-3-D- Adolescent exposure to MPH tends to reduce neuronal sensitivity to the combination of nicotine, MPH and eticlopride.. 177
VI-3-E- Nicotine normalises amphetamine-induced high rearing activities 182

VI-4- Discussion ... 183

Chapter VII – Concluding remarks and perspectives. 188

Publications .. 195

References .. 196
Table of figures

Figure 1: Regions of interest for *in vitro* neurotransmitter efflux experiments 25
Figure 2: Time course example of a typical 3H-dopamine efflux experiment in the striatum ... 27
Figure 3: Dose-response of ADHD drugs and other selective uptake inhibitors on prefrontal cortex 3H-dopamine efflux .. 29
Figure 4: Role of norepinephrine terminals in ATX-induced dopamine efflux 30
Figure 5: Dose-response of ADHD drugs and other selective uptake inhibitors on striatal 3H-dopamine efflux .. 32
Figure 6: Atomoxetine induces striatal dopamine efflux from dopamine terminals, but not noradrenergic terminals ... 33
Figure 7: Interactions between ADHD drugs on prefrontal cortex and striatal 3H-dopamine efflux .. 34
Figure 8: Interactions between atomoxetine and D-amphetamine on prefrontal cortex 3H-dopamine efflux .. 35
Figure 9: Sodium dependency of both methylphenidate and atomoxetine in inducing striatal tritiated dopamine efflux .. 36
Figure 10: ADHD drugs produced additional effects on dopamine efflux from striatal slices when co-applied with a potassium-rich buffer .. 37
Figure 11: Atomoxetine induces striatal dopamine efflux by a gradient-dependent mechanism .. 37
Figure 12: Atomoxetine-induced dopamine efflux is not dependent upon extracellular calcium concentrations ... 38
Figure 13: Atomoxetine-induced dopamine efflux, but not methylphenidate-induced dopamine efflux, is dependent upon intracellular calcium concentrations .. 39
Figure 14: Superfusion of reserpine induces prefrontal and striatal dopamine efflux . 40
Figure 15: Atomoxetine-induced dopamine efflux is dependent upon vesicle integrity ... 40
Figure 16: Dependency of methylphenidate on vesicle integrity to induce dopamine efflux ... 41
Figure 17: Atomoxetine-induced striatal dopamine efflux does not depend upon the inwardly rectifying potassium channels. ... 42
Figure 18: Atomoxetine also induces 3H-norepinephrine efflux from prefrontal cortex slices. .. 43
Figure 19: Role of adrenergic alpha-2 receptors on atomoxetine-induced norepinephrine efflux. ... 43
Figure 20: Areas of interest for in vivo single-cell extracellular electrophysiological recordings. .. 56
Figure 21: In vivo PFC pyramidal neuron recording example. 61
Figure 22: Methylphenidate preferentially increases the firing rate of the spontaneously active PFC neurons through a mechanism partially dependent on dopamine D_1 receptors... 62
Figure 23: D-amphetamine dose-dependently increased the firing rate of PFC neurons through a dopamine D_1 receptor dependent mechanism. .. 64
Figure 24: D-amphetamine requires functional dopamine D_1 and adrenergic alpha-1 receptors to induce firing rate increases. ... 66
Figure 25: Effects of selective dopamine D_1 receptor antagonism on atomoxetine-induced activation of PFC neurons... 68
Figure 26: Effects of selective monoamine receptor antagonists on atomoxetine-induced activation of PFC neurons. .. 69
Figure 27: Local NMDA application induces transient firing rate activation of pyramidal neurons by a partial NMDA receptor 2B dependent mechanism.................... 71
Figure 28: ADHD drugs increase NMDA-induced activation of PFC neurons. 72
Figure 29: Individual neuronal responses to local NMDA application following ADHD drug intravenous administrations... 74
Figure 30: Effect of dopamine D_1 receptor blockade on NMDA-induced activation of PFC neurons induced by D-amphetamine... 75
Figure 31: Effect of dopamine D_1 receptor blockade on subsequent NMDA-induced activation of PFC neurons induced by D-amph ... 75
Figure 32: Effect of iontophoretically-applied molecules on spike amplitudes of PFC pyramidal neurons. ... 77
Figure 33: Effect of iontophoretically-applied dopamine, MPH and D-amph on electrical parameters of PFC pyramidal neurons. ... 78
Figure 34: Modulation of the NMDA neurotransmission of striatal GABAergic medium spiny neurons by dopamine. ... 79

Figure 35: Modulation of the NMDA neurotransmission of striatal GABAergic medium spiny neurons by methylphenidate. .. 80

Figure 36: Behavioural effects of psychostimulant exposure using D-amphetamine and methylphenidate. .. 82

Figure 37: Psychostimulant exposure increases cortical and striatal NMDA receptor 2B protein expression. ... 83

Figure 38: Locations of the ventral tegmental area and local PFC lidocaine perfusions. ... 100

Figure 39: Vehicle administration does not alter the electrophysiological activity of midbrain dopamine neurons. ... 101

Figure 40: Methylphenidate decreases the firing and burst activities of midbrain dopamine neurons. .. 102

Figure 41: Methylphenidate decreases the firing and burst activities of midbrain dopamine neurons in a dose-dependent manner. ... 103

Figure 42: Atomoxetine does not change the electrophysiological activity of midbrain dopamine neurons. .. 104

Figure 43: Methylphenidate exerts a hidden excitatory effects on midbrain dopamine neurons. ... 105

Figure 44: Adrenergic alpha-1 receptors alone are not responsible for the excitatory effects of methylphenidate. ... 107

Figure 45: Dopamine D_{1} receptors alone are not responsible for the excitatory effects of methylphenidate. .. 108

Figure 46: Methylphenidate requires both adrenergic alpha-1 and dopamine D_{1} receptors to exert its excitatory effects on midbrain dopamine neurons. 109

Figure 47: Importance of glutamatergic neurotransmission in methylphenidate-induced excitatory effects. .. 110

Figure 48: The excitatory effect induced by the combination methylphenidate/eticlopride does not mainly involve local catecholamine receptors. 111

Figure 49: The importance of local glutamatergic neurotransmission in methylphenidate-induced excitatory effects. .. 113
Figure 50: The importance of local NMDA neurotransmission on midbrain dopamine neurons. ... 114

Figure 51: The role of the prefrontal cortex in methylphenidate-induced excitatory effects on midbrain dopamine neurons ... 115

Figure 52: Experimental protocol for chronic methylphenidate treatment during adulthood. ... 123

Figure 53: Chronic exposures to methylphenidate or sucrose do not alter blood sugar levels. ... 125

Figure 54: Impact of intraperitoneal dosing and methylphenidate on weight gain. ... 126

Figure 55: Chronic methylphenidate exposure induces tolerance in midbrain dopamine neurons to subsequent intravenous challenges. ... 127

Figure 56: Tolerance to methylphenidate challenges in midbrain dopamine neurons recorded from orally treated animals. ... 128

Figure 57: Tolerance to methylphenidate challenges in midbrain dopamine neurons recorded from intraperitoneally-treated animals. ... 129

Figure 58: Neuronal populations before/after methylphenidate and eticlopride administrations and their respective responses. ... 130

Figure 59: Chronic treatment with methylphenidate does not induce dopamine D2 autoreceptor desensitisation. ... 131

Figure 60: Dopamine release tolerance to methylphenidate perfusion in chronically treated animals. ... 132

Figure 61: Effect of chronic methylphenidate treatment on spontaneous and NMDA-induced firing activities of prefrontal cortex pyramidal and striatal medium spiny neurons. ... 134

Figure 62: Chronic exposure to methylphenidate induces dampening of striatal medium spiny neurons to locally applied dopamine. ... 135

Figure 63: Chronic methylphenidate exposure leads to decreased striatal NMDA 2B receptor expression. ... 136

Figure 64: Experimental protocol for chronic methylphenidate treatment during adolescence. ... 146

Figure 65: Sucrose preference test protocol. ... 147

Figure 66: Dorsal raphe nucleus location. ... 148
Figure 67: Adolescent exposure to chronic methylphenidate does not induce body growth delay. .. 150

Figure 68: Chronic adolescent exposure to methylphenidate does not induce depression-like behaviour at adulthood. .. 152

Figure 69: Responses of dorsal raphe nucleus serotonin neurons to chronic methylphenidate in correlation to anhedonia... 154

Figure 70: Long-term neuronal adaptations of midbrain dopamine neurons following adolescent exposure to methylphenidate.. 155

Figure 71: Adolescent exposure to methylphenidate partially induces dopamine D2 autoreceptor desensitisation in adulthood... 156

Figure 72: Adolescent exposure to methylphenidate does not induce tolerance to methylphenidate challenges in adulthood... 157

Figure 73: Adolescent exposure to methylphenidate does not increase prefrontal cortex NR2B protein expression... 158

Figure 74: Adolescent exposure to methylphenidate induces behavioural sensitisation to later D-amphetamine challenge... 159

Figure 75: Caffeine administration does not induce significant electrophysiological changes to midbrain dopamine neurons... 171

Figure 76: Pre-treatment with caffeine does not prevent the excitatory component of methylphenidate following dopamine D2 receptor antagonism. 172

Figure 77: Pre-treatment with caffeine tends to increase the excitatory component of methylphenidate following dopamine D2 receptor antagonism. 173

Figure 78: Responses of midbrain dopamine neurons to intravenous nicotine challenges. ... 175

Figure 79: Pre-treatment with nicotine does not alter the excitatory component of methylphenidate following dopamine D2 receptor antagonism. 176

Figure 80: Pre-treatment with nicotine does not alter the methylphenidate-induced excitatory effects on midbrain dopamine neurons... 177

Figure 81: Absence of cross-sensitisation between adolescent exposure to methylphenidate and adult exposure to nicotine... 179

Figure 82: In vivo extracellular single cell recordings illustrating the absence of cross-sensitisation between adolescent exposure to methylphenidate and later exposure to nicotine. .. 180
Figure 83: *In vivo* extracellular single cell recordings illustrating the absence of cross-sensitisation between adolescent exposure to methylphenidate and post-exposure to nicotine. ... 181

Figure 84: A possible tendency of adolescent methylphenidate exposure to induce long-lasting desensitisation to the excitatory component of MPH. ... 181

Figure 85: Nicotine normalises the rearing events induced by acute D-amphetamine exposure.. 182
List of tables

Table 1: Binding properties of the 3 main ADHD drugs and other compounds. 7

Table 2: Proportion of neurons showing significant or non-significant changes in basal firing rate and in their responses to the iontophoretic application of NMDA to the different ADHD drugs and to SCH23390. ... 76

Table 3: Summary of known and proposed interactions between the molecules under study... 84
Introduction

ADHD: statistics and symptoms

Among the worldwide population, Attention-Deficit and Hyperactivity Disorder (ADHD) affects 6-7% of children if diagnosed via the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, fourth edition, (Willcutt, 2012)). The prevalence of ADHD in the US child population has been estimated at 8.7% (Froehlich et al., 2007), a rate that is very similar to the UK figure of 8% of school-aged children (McClure, 2013). However, the prevalence rate could climb up to 14%-16% depending on the population studied and the methodology used (Perera et al., 2009; Rader et al., 2009). In an American adult cohort (18-44 years old), ADHD occurred at a prevalence of just over 4% (Kessler et al., 2006). According to the DSM-IV, symptoms of ADHD include impulsivity, inattention as well as social and academic difficulties. Depending upon the symptoms, 3 different types of ADHD can be distinguished: predominantly difficulty in concentration, predominantly hyperactivity and impulsiveness and finally a combination of all of the above (Steinau, 2013). This can be diagnosed in children as well as adults (Gentile et al., 2006). ADHD can include a wide range of symptoms such as restlessness, fidgeting, anxiety, attention deficit, distractibility, excessive talking, forgetfulness and frequent interruption of others (American Psychiatric Association, 2013; Wilens et al., 2009; Wilens et al., 2010). After being diagnosed with ADHD, patients will then either follow a psychosocial therapy or receive medication, or both. Although the pharmacological approach is preferred, there is clear meta-analysis evidence that the psychosocial approach is highly effective (Fabiano et al., 2009). This consists in intervention at school, parent management training but also neurofeedback, which consists in self-training the patient to modify the EEG patterns of his own brain, while under fMRI scanning and while also receiving visual feedback on such EEG patterns (Linden, 2014). Neurofeedback is considered as being “efficacious and specific” (Arns et al., 2009). Evidence for beneficial effects of non-pharmacological approaches now exist, such as behavioural training and modification, dietary programs (supplementation or elimination of some compounds), relaxation exercises, massage
and psychotherapy (Catala-Lopez et al., 2015; Hodgson et al., 2014; Moore et al., 2015; Poncin et al., 2007; Richardson et al., 2015; Roman, 2010). All these alternative treatments have led to statistically significant results (Sonuga-Barke et al., 2013). Physical exercise is also efficient in reducing core symptoms of ADHD (Cerrillo-Urbina et al., 2015; Gapin et al., 2011; Hoza et al., 2015; Pontifex et al., 2013; Silva et al., 2015; Ziereis et al., 2015). Acute exercise at moderate intensity also improves fatigue, confusion and depression, as shown by a recent study (Fritz et al., 2016). And yet, stimulant medications are often preferred. Stimulant drugs can consist of either methylphenidate or amphetamine salts. They have been associated with a high response rate in ADHD patients (Wigal, 2009), improving attention-related symptoms such as vigilance, short-term memory, cognition, restlessness and distractibility (Kolar et al., 2008). An alternative to these stimulants is the drug atomoxetine, which, unlike stimulants, fails to improve academic work in children (Prasad et al., 2013) and has a longer onset of action (Bushe et al., 2014). Atomoxetine can be prescribed to patients with a previous history of substance use or patients displaying serious side effects to psychostimulant therapy (Kolar et al., 2008) because of its significantly lower abuse potential than psychostimulants (Niederhofer, 2010; Wee et al., 2004). However, atomoxetine (1.2-1.8 mg/kg/day) also improves ADHD symptoms such as hyperactivity, inattention and impulsivity (Ledbetter, 2006; Michelson et al., 2001b; Purper-Ouakil et al., 2005).

Aetiology of ADHD

The causes of ADHD are yet to be clarified. Some studies have reported possible genetic factors, involving dopamine and serotonin neurotransmission as well as the BDNF gene (Kebir et al., 2009). Other studies have shown that ADHD may be caused by environmental factors such as low birth weight, premature birth, infections or traumas (Millichap, 2008; Thapar et al., 2012). More studies are needed to determine the exact cause of ADHD, if a specific one could be determined. Genetic studies have found an association between several proteins and ADHD. These proteins are often found to be dopamine transporters (DAT1), dopamine receptors (D4, D5) or serotonin (5-HT1B) receptors (Gizer et al., 2009). A few studies have also focused on glutamate neurotransmission. Indeed, genome scans of ADHD patients have identified the GRIN2A gene, encoding for the ionotropic glutamate NMDA receptor 2A (N-methyl-D-
aspartate), as a risk factor for ADHD (Adams et al., 2004; Banaschewski et al., 2010; Dorval et al., 2007). All the genetic studies highlight single nucleotide polymorphism (SNP) in the aforementioned proteins/genes (Adams et al., 2004; Banaschewski et al., 2010; Dorval et al., 2007; Guan et al., 2009; Kollins et al., 2008; Lasky-Su et al., 2008; Oades et al., 2008). Although the NMDA receptor 2A seems to be linked to ADHD, the association between the NMDA receptor 2B and ADHD remains unclear, as it may only be linked to the inattention and hyperactivity dimensions and has yet to be proven to be associated with both verbal working memory and verbal short-term memory (Dorval et al., 2007). These genetic insights into the cause of ADHD emphasise the importance of serotonin, dopamine and glutamate pathways in the physiopathology of ADHD.

Structural evidence of decreased white and grey matter volumes exists in ADHD patients, if compared to healthy control patients. Regional anatomical abnormalities such as decreased grey matter in the right insula and the right orbitofrontal cortex, combined with decreased connectivity between the insula and the right hippocampus have been observed (Li et al., 2015a). Some studies reported structural abnormalities in the dorsolateral prefrontal cortex and the anterior cingulate cortex, two regions involved in cognition control (Kessler et al., 2014). Cerebellar structural changes have also been analysed in patients with ADHD and have been found to be linked to some of the symptoms the patients suffer from (Valera et al., 2007). Some studies have associated ADHD with decreases in regional brain volumes (Castellanos et al., 2002; Lopez-Larson et al., 2012; Mostofsky et al., 2002; Wolosin et al., 2009), although this has been recently disputed by some other studies (Onnink et al., 2014; Semrud-Clikeman et al., 2012; Stevens et al., 2012). In 2008, Perlov found no differences in the hippocampal and amygdaloid volumes of adults with ADHD, compared to healthy volunteers (Perlov et al., 2008), although another study on children and adolescents (6-18 years old) found increased hippocampal volumes (Plessen et al., 2006). In contradiction, a third study found decreased volumes of the left hippocampus in non-medicated ADHD children, which suggests, according to the authors, increased risks for developing depression (Posner et al., 2014).
Neurotransmitters and brain regions implicated in ADHD

The pathophysiology of ADHD suggests two main neurotransmitter pathway alterations: those involving dopamine neurotransmission and those involving norepinephrine neurotransmission (Bokor et al., 2014). Therefore, two brain regions, where both norepinephrine and dopamine are densely stored inside synaptic terminals, are involved: the prefrontal cortex (PFC) and the ventral tegmental area (VTA), respectively. In the prefrontal cortex, therapies aiming at increasing monoamine neurotransmission have been proven efficient in improving cognition, either via alpha-2 receptor activation (Arnsten et al., 2005) or via dopamine D1 receptor enhancement (Gronier, 2011; Levy, 2009), which help to reinforce the noradrenergic theory of ADHD. The dopamine theory is at the centre of understanding ADHD. There is no doubt that psychostimulants either block the dopamine reuptake transporter (DAT) or influence dopamine transmission, as evidenced before (Gonon, 2009). Positron emission tomography performed in ADHD patients suggests altered striatal dopamine transporter/receptor availability (Volkow et al., 2007a; Volkow et al., 2007b; Wang et al., 2013), although this was partly contested by Wang’s study in 2013 (Wang et al., 2013). Therefore, one could still challenge the dopamine hypothesis in ADHD. The efficiency of methylphenidate in reducing ADHD symptoms seems to be directly associated with striatal dopamine receptor availability (Crunelle et al., 2013; Kasparbauer et al., 2015; Krause et al., 2005; Rosa-Neto et al., 2005). Finally, a polymorphism located within the enzyme dopamine beta-hydroxylase (rs5320) was hypothesised as being a risk factor for ADHD (Wang et al., 2012), suggesting a possible role for norepinephrine in ADHD. The current literature remains contradictory concerning brain dopamine receptor/transporter availability at baseline levels in ADHD patients.

Growing evidence is now suggesting altered glutamate neurotransmission in ADHD. Indeed, a study performed in children with ADHD revealed decreased glutamate/glutamine ratios in the striatum following chronic (14-18 weeks) methylphenidate and atomoxetine, while ratios in the prefrontal cortex were only altered in patients receiving atomoxetine, but not methylphenidate (Carrey et al., 2002). Besides, compared to healthy controls, ADHD patients present greater baseline levels of glutamate and creatinine in the striatum (Carrey et al., 2007) and reduced
glutamate/glutamine ratios in the cingulate cortex (Perlov et al., 2007). ADHD can be characterised by a hypofunctioning glutamatergic neurotransmission (Carlsson, 2000; Carlsson, 2001). Moreover, variations within CNVs (copy number variants) of glutamate metabotropic receptors have been observed in ADHD patients and appear to be related to the clinical characteristics of ADHD (Akutagava-Martins et al., 2014).

Adequate balancing between excitatory and inhibitory neurotransmitters is crucial for the maintenance of normal brain functioning (Purkayastha et al., 2015). A recent imagery study found decreased cortical GABA concentrations in ADHD children (Edden et al., 2012), although a meta-analysis study (performed on 173 studies) revealed no association between ADHD and GABA levels (Schur et al., 2016). Another study observed elevated plasmatic GABA levels in ADHD patients with compulsive disorders, but not in ADHD patients without such a comorbidity (Prosser et al., 1997). In the cingulate cortex of ADHD children, the functioning of GABA\textsubscript{A} receptors seems to be in direct correlation to abnormal behavioural disturbances (Nagamitsu et al., 2015).

Attention and impulsivity are core symptoms of ADHD (Adesman, 2001). In rodents, the whole prefrontal cortex can be divided into three parts: the medial, lateral and ventral prefrontal cortex (Dalley et al., 2004). Within the medial prefrontal cortex, a few subregions can be of interest due to the roles they play in attention or impulsivity. Indeed, in rats, lesions within the prelimbic, infralimbic and cingulate cortices induce impaired attention (Dalley et al., 2004; Muir et al., 1996). Lesions within the anterior cingulate do not seem to induce impulsivity (Cardinal et al., 2001), although another study found increased impulsivity following lesions of the anterior cingulate cortex (Muir et al., 1996). On the other hand, the orbitofrontal cortex does not seem to be implicated in impulsivity (Winstanley et al., 2004). Finally, lesions within the infralimbic cortex tend to increase impulsive choices (Chudasama et al., 2003). Although these substructures can be functionally distinguished, anatomical segregation remains heterogeneous and equivocal (Machens et al., 2010).

The cerebellum, located beneath the occipital lobe, is important for motor coordination and information processing. It is composed of GABAergic Purkinje neurons and glutamatergic granule neurons (Hibi et al., 2012). Its role in ADHD is
slowly emerging. Indeed, a few studies found loss of volume in the superior cerebellar vermis of ADHD patients (Berquin et al., 1998; Mackie et al., 2007; Mostofsky et al., 1998). Stimulants appear to alleviate such differences in a time-dependent manner, where the longer the treatment, the stronger the effect on cerebellar volumes (Ivanov et al., 2014). The severity of ADHD symptoms is also directly correlated to decreased cerebellar hemisphere volumes (Ivanov et al., 2014). Moreover, a recent study using fMRI demonstrated that ADHD patients display prominent cerebro-cerebellar functional connectivity, an effect that was barely observed in matched controls, highlighting the importance of interactions between the frontal cortex and the cerebellum in a normally functioning brain (Kucyi et al., 2015). Finally, postural abnormalities have been reported in ADHD children (Bucci et al., 2014; Buderath et al., 2009; Kooistra et al., 2009; Pitcher et al., 2003; Shorer et al., 2012) and adults (Hove et al., 2015), an effect partially due to cerebellar gray matter abnormalities (Hove et al., 2015).

ADHD drugs pharmacology

Three main drugs are available: methylphenidate, D-amphetamine, the two being stimulants, and atomoxetine, a non-stimulant medication.

Methylphenidate

Methylphenidate is known to block the Dopamine Transporter (DAT, with an IC$_{50}$ of 0.19 µM) and the Norepinephrine Transporter (NET, with an IC$_{50}$ of 0.034 µM, Table 1) (Bymaster et al., 2002; van der Marel et al., 2014). These two mechanisms induce concentration increases of dopamine and norepinephrine inside the synaptic cleft. Pharmacokinetics studies have shown differences between the two threo-methylphenidate enantiomers (Kimko et al., 1999), although all forms of methylphenidate easily cross the brain-blood barrier. In therapy, only racemic mixtures of d-threo-methylphenidate and l-threo-methylphenidate are administered while erythro enantiomers are not found in any formula. Because of different metabolic stereoselective clearances, d-threo-methylphenidate becomes more potent than its enantiomer counterpart. Methylphenidate is considered a short-acting drug because of its limited half-life (between 2 to 3 hours). The duration of action can extend to 4 hours.
maximum, but peak methylphenidate concentration is achieved after 2 hours (Kimko et al., 1999).

Table 1: Binding properties of the 3 main ADHD drugs and other compounds.
Please refer to in-text references. DAT: dopamine reuptake transporter, NET: norepinephrine reuptake transporter, SERT: serotonin reuptake transporter, VMAT2: vesicular monoamine transporter, KIR: inward rectifying potassium channel, A_x receptors: adenosine receptor types, α_3β_y receptors: nicotinic acetylcholine receptor types, IC_{50}: half maximum inhibitory concentration, K_i: binding affinity, EC_{50}: half maximum excitatory concentration.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Target</th>
<th>IC_{50}</th>
<th>K_i</th>
<th>EC_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylphenidate</td>
<td>DAT</td>
<td>0.19 µM</td>
<td>0.06 µM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NET</td>
<td>0.03 µM</td>
<td>0.1-0.4 µM</td>
<td></td>
</tr>
<tr>
<td>D-amphetamine</td>
<td>VMAT2</td>
<td>3.3 µM</td>
<td>2 µM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAT</td>
<td>35 nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NET</td>
<td>39 nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomoxetine</td>
<td>DAT</td>
<td>1451 nM</td>
<td>2.3 µM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NET</td>
<td>5 nM</td>
<td>5 nM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SERT</td>
<td>77 nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KIR</td>
<td>30-50 µM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VMAT2</td>
<td>3.4 µM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caffeine</td>
<td>A_1, A_2, A_3 receptors</td>
<td>10-800 µM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopamine</td>
<td>DAT</td>
<td>2.5 µM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NET</td>
<td>0.67 µM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotine</td>
<td>α_7</td>
<td></td>
<td></td>
<td>13.2 µM</td>
</tr>
<tr>
<td></td>
<td>α_3β_2</td>
<td></td>
<td></td>
<td>0.1-2.5 µM</td>
</tr>
<tr>
<td></td>
<td>α_3β_4</td>
<td></td>
<td></td>
<td>87 µM</td>
</tr>
</tbody>
</table>

Amphetamines

Amphetamines, like methylphenidate, exist in different forms. The well-known methamphetamine (“crystal meth”, “blue meth”, “meth”) is a common addictive substance in western countries like the US and Canada, but also in countries from the European Union (De-Carolis et al., 2015; Lecomte et al., 2014). Levo-amphetamine is used to increase wakefulness while Dextro-amphetamine (D-amph) is prescribed to treat ADHD. The Adderall® formulation contains both types of stereoisomers with a 1:3 L/D ratio (25% L-amphetamine, 75% D-amphetamine). D-
amphetamine exerts its action by firstly penetrating into the synapse through the dopamine transporter. After reaching the cytoplasm, it will block the vesicular dopamine transporter VMAT₂, therefore inducing vesicular neurotransmitter depletion as well as increases in intracellular dopamine concentrations (Eiden et al., 2011). This process will result in strong dopamine efflux from the synapse by two distinct mechanisms. Passive dopamine diffusion will occur directly across the membrane as a result of dramatic increases in intracellular dopamine concentrations (Wallace, 2012). Dopamine will also leave the intracellular compartment through reverse dopamine transport via the DAT that will switch in a “reverse” mode (Sulzer et al., 1995). Early onset of amphetamine treatment can induce growth deficits in some children (Faraone et al., 2005; Swanson et al., 2007). Amphetamine-like drugs cause neurotoxicity, either by increasing oxidative stress or through consequences of induced epileptic seizures (Berman et al., 2008; Berman et al., 2009b; de la Torre et al., 2000; Steinkellner et al., 2011).

Atomoxetine

Although atomoxetine is not a stimulant, its mechanisms of action are similar to those of MPH by inhibiting the NET (IC₅₀ of 5 nM) and to a lower extent the serotonin transporter (SERT, IC₅₀ of 77 nM) as well as the DAT (IC₅₀ of 1451 nM, Table 1) (Bymaster et al., 2002). ATX also binds to Kᵢᵣ channels (IC₅₀ 30-50 µM) and post-synaptic NMDA receptors (IC₅₀ of 3.5 µM (Ludolph et al., 2010)). Compared to stimulants, ATX has a longer onset of action, usually 4 to 8 weeks (Bushe et al., 2014). Core symptoms of ADHD patients (hyperactivity, inattention and impulsivity) reduce gradually under ATX treatment. Following 16 weeks of ATX treatment, attention was significantly improved (greater than placebo) (Wietecha et al., 2013a), so was the response inhibition following a 12-week treatment (Shang et al., 2012). Following oral administration, peak plasma levels culminate after 1-2 hours (Sauer et al., 2003). Daily atomoxetine doses are generally within the range of 60-120 mg/day (Simpson et al., 2004). Typical ATX titration is initiated with 0.5 mg/kg on the first day and could be gradually increased up to 1.2 mg/kg on the fourth day (Ledbetter, 2006; Velcea et al., 2004). Patients under 12 generally receive 40 +/- 11 mg/day while patients aged between 12-18 receive 61 +/- 19 mg/day (Bastiaens, 2007). It is important to note
that chronic ATX treatment leads to side effects in more than 10% of all adult ADHD patients (Walker et al., 2015).

The new ADHD drug Metadoxine

Metadoxine was originally designed to treat alcohol intoxication (Addolorato et al., 2003; Diaz Martinez et al., 2002; Shpilenya et al., 2002), but is now targeting other medical conditions such as fatty liver disease (Abenavoli et al., 2014; Caballeria et al., 1998; Stefanini et al., 1999), fragile X syndrome (de Diego-Otero et al., 2014; Schaefer et al., 2015) and ADHD (Manor et al., 2012; Manor et al., 2013; Manor et al., 2014). The molecular formula is composed of a pairing between an ion and vitamin B6 (Guerrini et al., 2006). Because vitamin B6 is necessary for GABA synthesis (Petroff, 2002; Schousboe et al., 2007), Metadoxine may play a crucial role in the regulation of GABA neurotransmission (Bono et al., 1991), the dysregulation of which has been closely linked to ADHD (Bollmann et al., 2015; Ende et al., 2015; Nagamitsu et al., 2015; Purkayastha et al., 2015). Up until 2016, this new molecule is still under clinical trials for its use in ADHD. Core ADHD symptoms were found to be significantly improved following 2 weeks of Metadoxine treatment (1400 mg/day), or after a single acute administration (Manor et al., 2012; Manor et al., 2013; Manor et al., 2014). Side effects of chronic Metadoxine intake are similar to the ones observed following atomoxetine treatment (Manor et al., 2012). Prescriptions of Metadoxine could be indicated for ADHD patients with alcohol abuse (Buoli et al., 2016), because of its efficiency in treating alcohol abuse (Addolorato et al., 2003). In mice, acute Metadoxine exposure (starting at 150 mg/kg) leads to increased dopamine levels in the striatum after 1 hour, but peak levels are observed after 24 hours (Fornai et al., 1993).

Efficiency, safety and side effects of ADHD drugs

Questions arise as to whether chronic psychostimulant treatments could produce deleterious effects on the brain, especially considering that the brain will continue to develop up to the age of 24 (Andersen, 2003). Recent studies conducted on rats have tried to identify possible side effects of such chronic treatments. One study on juvenile rats has shown that methylphenidate administration for 13 weeks leads to weaker and less mineralised bones (Komatsu et al., 2012). It is important to note that, after
termination of the treatment and a recovery period of 5 weeks, all the side effects previously observed were relieved. In Humans, growth is not affected by treatment (Biederman et al., 2010; Faraone et al., 2008; Goldman, 2010; Harstad et al., 2014). Another animal study has focused on the relationship between chronic MPH administration and cortical thickness (van der Marel et al., 2014). This study fails to observe any MPH-induced cortical thinning or functional connectivity loss, but rather highlights significant age-dependent effects of psychostimulant treatment on brain characteristics such as grey and white matter volumes, striatal functional activity and cortical thickness. It will be essential to assess questions regarding the possible addictive effect of MPH on ADHD patients, in order to determine the safety of such medication. Supra-therapeutic doses of MPH, used therefore as a recreational drug, have the potential to induce addiction (Swanson et al., 2003). When used at therapeutic doses, MPH seems to be a safe drug to improve ADHD symptoms in children and adults, although sporadic MPH-induced side effects have been reported such as insomnia, headaches, appetite disturbances, dyskinesia as well as dizziness (Ahmann et al., 1993; Efron et al., 1997; Rappley, 1997; Rodrigues et al., 2008; Senecky et al., 2002). Very surprisingly, a few studies have recently proven that MPH could be prescribed for cocaine-addicted ADHD patients, thus decreasing both addiction-related brain connectivity and cocaine administration, but also improving the inhibitory control of such patients (Collins et al., 2006; Konova et al., 2013; Li et al., 2010). One clinical trial has investigated the efficiency of methylphenidate, or other dopamine uptake blockers, in reducing severe abuse-related effects of amphetamines (Howell et al., 2014). This could be of great interest for preventing craving and withdrawal side effects. While it is easy to understand how MPH can attenuate the effect of D-amph by preventing its penetration into the presynaptic terminal through the dopamine/norepinephrine transporter, the beneficial effect of MPH on cocaine addiction is more difficult to understand, as they both exert DAT blockade.

From 1990 to 1998, the annual number of children diagnosed with ADHD has increased, with discrepancies among genders, ranging from 2 fold for boys to 3 fold for girls (Robison et al., 2002). Unsurprisingly, ADHD drugs consumption has followed the worldwide increase in ADHD diagnoses. This is reflected, for example, in Israel, where D-amphetamine prescriptions have increased by 30% over a 7-year period (Ponizovsky et al., 2014). As with MPH, D-amph has been extensively studied for its use in ADHD
patients. It has been proven that D-amph improves ADHD symptoms in adults, but can also trigger cardiovascular and psychiatric adverse effects, as well as substance abuse (Castells et al., 2011). Although several studies have reported an increased risk of sudden cardiac events in patients under psychostimulant therapy (Munk et al., 2015; Schelleman et al., 2012; Vetter et al., 2008; Winterstein et al., 2009), no consequences were found on the QRS and QT intervals, even after a methylphenidate overdose (Hill et al., 2010). Therefore, the risk of developing abnormal heart rhythms such as ”torsades de pointes” is not increased (Hill et al., 2010; Hole et al., 2014; Lamberti et al., 2015; Noda et al., 2004). For children aged 6-12 and adults, daily treatment with amphetamine is safe and efficient in improving symptoms (Hart et al., 2013; Najib, 2009; Spencer et al., 2013). However, 0.25% of all patients under D-amph treatment experience strong adverse effects such as psychosis or delayed motor response (Berman et al., 2009a; Ross, 2006). Nevertheless, D-amph appears today to be a safe and efficient medication for ADHD treatment.

For ADHD patients that do not respond well to the stimulants, atomoxetine may be the medication of choice. As a NET inhibitor, it increases norepinephrine concentration inside the synaptic cleft. However, recent data using the in vivo microdialysis technique have shown that it can also increase dopamine efflux in the PFC. Although ATX is also safe and well tolerated, the symptomatology of a subgroup of patients did not improve with medication (Schwartz et al., 2014). Some patients reported adverse effects during ATX treatment with variances amongst onset (Wietecha et al., 2013b), but all could be resolved with an appropriate dose schedule and titration. Some known side effects are insomnia, nausea, sweating and decreased appetite (Kolar et al., 2008). As a sympathetic indirect agonist, this drug may produce undesirable cardiovascular side effects, but may have no action on the motor system and drug abuse liability. However, the onset of action is particularly long compared to that of psychostimulants, usually between 4-8 weeks (Bushe et al., 2014). There is an almost complete lack of scientific evidence of abuse potential for ATX (Upadhyaya et al., 2013). Only one study (Lile et al., 2006) reported a partial effect of ATX on discriminative stimulus in subjects with recent histories of stimulant use. On the other hand, some studies found that ATX remains well tolerated, safe and efficient (Garnock-Jones et al., 2009; Michelson et al., 2001a). One study reported that ATX, ingested in a
suicide attempt at a dose of nearly 3 grams, induced widening of the QRS interval as well as a tonic-clonic seizure, but not death (Kashani et al., 2007).

Overall, the three ADHD drugs MPH, D-amph and ATX are considered as efficient in treating ADHD symptoms and appear safe for use, even during pregnancy (Bro et al., 2015). However, it is wise to remember that some adverse effects have been reported, justifying the need for close monitoring of at-risk patients.

Methylphenidate as a drug of abuse, misuse and addiction

Growing concerns have arisen regarding methylphenidate non-medical diversions (Sembower et al., 2013). As a psychostimulant drug, it can be used for cognitive enhancement by some users and an estimated proportion of 6-8% of all adult students used such cognitive enhancement (Teter et al., 2006). This off-label use is often found in students wanting to improve academic performance (Beyer et al., 2014; Outram, 2010), although methylphenidate is not the only cognitive enhancer in use (Micoulaud-Franchi et al., 2014).

Toxic exposure to methylphenidate is often caused by drug misuse (Jensen et al., 2014). Intentional misuse remains very low whereas intentional overexposure to methylphenidate is often found as a result of suicide attempts (Jensen et al., 2014; Zosel et al., 2013). Due to the nature of the drug and its physiological effects, death after methylphenidate overdose or misuse has never been reported (Zosel et al., 2013).

Addiction to methylphenidate, also called dependence, remains rare (Ozaki et al., 2006). Paradoxically, methylphenidate seems to be efficient in decreasing amphetamine cravings in amphetamine-dependent patients (Solhi et al., 2014; Tiihonen et al., 2007), although this is disputed (Konstenius et al., 2010; Miles et al., 2013; Tiihonen et al., 2007).
Pharmacology of ADHD drugs in animal studies

In animal studies, two brain regions have been particularly scrutinised for their involvement in physiological processes that are fundamental in ADHD symptoms. The first region of interest is the Prefrontal Cortex (PFC), where the brain processes information regarding social behaviour, cognition and executive functions. As a matter of fact, the PFC is responsible for executive functions such as mentation, environment representation and semantic processing (Goldman-Rakic, 1996). Short-term and long-term memory also originate within the PFC (Fletcher et al., 1998; Shimamura et al., 1990). Another major function of the PFC is composed of both the filtering of information and the inhibition of irrelevant activities (Chao et al., 1998; Shimamura, 2000). Finally, the PFC also processes all the sensorimotor information, including language and self awareness (Clemo et al., 2012; Kayser et al., 2012b; Laurienti et al., 2003; Siddiqui et al., 2008; Stephan et al., 2002). Psychostimulants enhance PFC activities, as observed recently (Berridge et al., 2011; Gronier, 2011). The PFC is characterised by dense cellular populations of glutamatergic pyramidal neurons and γ-amino-butyric acid (GABA) interneurons. Pyramidal neurons are modulated by several neurotransmitters, such as dopamine, serotonin, GABA and norepinephrine (Steketee, 2003). The second region of interest is the Ventral Tegmental Area (VTA). This region is involved in reward processes, motivation as well as addiction (Adinoff, 2004) and so is extensively studied in rodents. A functional connectivity exists between the VTA and the PFC. Although these two regions are physically separated, they are able to maintain a physiological connectivity, thus allowing permanent communication between the two structures. This is achieved by axonal projections from the VTA dopaminergic neurons onto PFC pyramidal neurons and interneurons. Thereby, the VTA exerts control over the PFC, through complex mechanisms (Steketee, 2003). In parallel, PFC glutamatergic neurons also project onto VTA dopaminergic neurons in vivo, proving a two-way communication between the two structures (Kauer et al., 2007; Lewis et al., 2000). The PFC directly controls burst activity of midbrain dopamine neurons, mainly through descending pathways (Floresco et al., 2003; Gariano et al., 1988; Kalivas, 1993; Murase et al., 1993; Overton et al., 1997; White, 1996). Therefore, glutamate plays a major role in inducing burst-like electrical discharges (Charlety et al., 1991; Chergui et al., 1993; Geisler et al., 2008; Johnson et al., 1992), which will be discussed later on. Within the VTA, dopamine neurons represent 55-60% of all neurons, while GABAergic neurons...
represent around 20% of all neurons (Kim et al., 2015). Interestingly, midbrain dopamine neurons can enter a GABA synthesising pathway through activation of an evolutionary alternative using the enzyme aldehyde dehydrogenase 1a1 (Kim et al., 2015). The remaining 20% of all neurons are composed of glutamate neurons (Nair-Roberts et al., 2008; Yamaguchi et al., 2007). Subchronic D-amphetamine exposure (5 mg/kg for 5 days, intraperitoneal) was found to alter midbrain GABAergic neurotransmission in rats (Giorgetti et al., 2002).

Pharmacology studies have been performed in the PFC and the VTA, using MPH, ATX, D-amph or other psychostimulants.

In the PFC, methylphenidate dose-dependently enhances signal processing, underlying the therapeutic effects of MPH for social behaviour and cognition (Devilbiss et al., 2008). Indeed, 0.5 mg/kg of acute MPH improved working memory, while 2 mg/kg impaired performance. Such behavioural effects were also positively correlated to prefrontal cortex neuronal activities, where low doses of MPH (0.25-2 mg/kg) enhanced electrical activities while higher doses (15 mg/kg) reduced spontaneous discharges (Devilbiss et al., 2008). Today, it is generally admitted that the mechanism of action of MPH within the PFC is triggered through dopamine D_1 and adrenergic α2 receptor modulations (Gronier, 2011). However, acute administration of such a stimulant (2.5 and 10 mg/kg) to rodents lead to behaviour sensitisation, described here as increased stereotypic movements as well as an increase in horizontal activity (Salek et al., 2012; Yang et al., 2007). Though dopamine in the prefrontal cortex is known to control a broad spectrum of brain activities, dopamine innervations are relatively sparse in the prefrontal cortex, compared to other monoamines innervations (Devoto et al., 2006) such as norepinephrine. Because dopamine has a higher affinity for the NET at norepinephrine terminals than for the dopamine transporter itself, it is believed that a significant part of the dopamine released in prefrontal areas originates from norepinephrine terminals (Devoto et al., 2006; Horn, 1973). Evidence for this hypothesis includes experiments in dopamine transporter knockout mice, where dopamine efflux is stimulated in the PFC by cocaine and norepinephrine uptake blockers (Moron et al., 2002). Prefrontal dopamine, at the adequate concentration range, is thought to play a major positive role in cognition, attention and working memory, mainly via stimulation of dopamine D_1 receptors (Floresco, 2013). Activation of
dopamine D_1 receptors in the prefrontal cortex initially suppress inhibitory post-synaptic currents (IPSCs), which is followed by facilitation of such IPSCs (Paul et al., 2013). Such biphasic effects are also observed following amphetamine exposure. As a matter of fact, acute D-amphetamine (0.01-3 mg/kg) exposure facilitates long-term potentiation (LTP) in pyramidal neurons of the PFC via D_1, but not D_2, receptor stimulation, while 10 mg/kg impairs LTP (Xu et al., 2010).

In the VTA, methylphenidate modulates dopamine neurotransmission by decreasing dopaminergic neuron activities through dopamine D_2 receptor stimulation in vivo. The electrophysiological effects of psychostimulants all seem to trigger decreases in VTA dopaminergic neurons activity, as observed with MPH and cocaine (Bunney et al., 2001), but can also lead to the uncoupling of D_2/D_3 midbrain receptors from Ga_2 proteins when amphetamine is applied, while leaving striatal D_2/D_3 receptors unchanged (Calipari et al., 2014). This is of great importance considering that receptor alterations can lead to synaptic reorganisation and altered brain plasticity.

In the dopaminergic synapse, D-amphetamine is known to cause dopamine release by interacting mainly with the membrane dopamine transporter and with the vesicular dopamine uptake system (VMAT), causing vesicular dopamine depletion and increases in cytoplasmic dopamine, as already mentioned. In return, these increases promote reverse transport of dopamine through the DAT (Robertson et al., 2009) but may also increase extracellular dopamine levels by other mechanisms, such as promoting rapid internalisation of dopamine carrier (El-Kabbani et al., 2004) or “passive membrane diffusion” (Wallace et al., 2008), although this passive dopamine diffusion has only been demonstrated in a computational model. Passive diffusion of relatively small and neutrally-charged hydrophobic molecules can occur directly across the phospholipidic bi-layer (Bergstrom et al., 2003; Camenisch et al., 1998; Cooper, 2000). However, no direct in vivo evidence of such a process has yet been observed. In the PFC, D-amph has a strong impact on synapse plasticity, inducing increases in the presynaptic membrane area, spine density and postsynaptic membrane area, but also inducing a reduced synaptic vesicle density (Uranova et al., 1989). The drug also induces behavioural sensitisation, defined here as an enhancement of the behavioural activating effects of the drug when repeated injections are performed, as well as a long-lasting hypersensitivity to later environmental or pharmacological challenges (Cador et al., 2002).
The study by Cador also shows that when an NMDA receptor antagonist was co-administered with D-amph within the VTA, behavioural sensitization was abolished, underlying the involvement of the glutamatergic neurotransmission in inducing sensitization, as well as PFC-VTA innervations (Cador et al., 1999).

Pharmacologically, systemic administrations of ATX (3 mg/kg) led to increases in prefrontal norepinephrine and dopamine levels, but not serotonin (Ago et al., 2014). This study underlines the monoamine system as a target for ATX. The drug also targets the NMDA (N-methyl-D-aspartate) neurotransmission in the striatum, as revealed by a marked reduction of the NMDA receptor 1 mRNA after 2 months of ATX treatment, as well as an increased NMDA2B receptor expression (Udvardi et al., 2013). These transcriptions/translations of the NMDA receptor and the norepinephrine transporter in the rat brain might contribute to ATX’s clinical effects in the treatment of ADHD, in which synaptic processes and especially a dysregulated glutamatergic metabolism seem to be involved. Another in vitro study has shown that 3 µM of ATX could block NMDA-induced membrane currents in a voltage-dependent manner, suggesting an open-channel blocking mechanism by ATX (Ludolph et al., 2010). Surprisingly, the bioavailability of ATX in the rat is only around 4% when absorbed through the gastrointestinal tract, probably due to their powerful first-pass metabolism capacities (Mattiuz et al., 2003).

ADHD patients have difficulties in controlling impulsive behaviour (Connor et al., 2010; Ende et al., 2016; Raiker et al., 2012; Urcelay et al., 2012). As a matter of fact, clinical diagnosis of ADHD accounts for impulsive choices (Neef et al., 2005), a trait arising from impaired control inhibition in patients (Schachar et al., 1995). In rodents, different experiments can be used to determine impulsivity. Indeed, rodents can be submitted to a delayed reward task, whereby either a large food reward is given following visual clues or an immediate but small food reward is given following a different visual clue (Schippers et al., 2016; van Gaalen et al., 2006). In this model, impulsivity is assessed as enhanced responses for an immediate but small reward (impulsive) compared to the delayed large reward (non-impulsive). Other experiments used the 5-choice serial reaction task. In this protocol, rodents are trained to perform correct nose poke in one (out of five) previously-illuminated holes following a waiting period. Here, impulsivity corresponds to the amount of premature nose pokes observed.
during the waiting period (Pillidge et al., 2016; Young et al., 2004; Young et al., 2009). Another method of assessing impulsivity is by using the go/no-go task. Such a protocol can be applied to rodents and humans (Anker et al., 2008; Bezdjian et al., 2009) and consists of only responding to a precise visual clue (“go”) whilst refraining responses (“no-go”) to other clues (Gomez et al., 2007). Some studies have shown the impact of psychostimulants on impulsivity. Indeed, D-amphetamine induces impulsivity in control rats but not in already impulsive spontaneously hypertensive animals (Adriani et al., 2003b; Furlong et al., 2016; Hand et al., 2009). Moreover, such an effect is dose dependent at regimens between 0.3 and 1 mg/kg (Paterson et al., 2011). In socially isolated rats, both D-amphetamine (2 mg/kg) and methylphenidate (2.5 mg/kg) decreased impulsivity, while only D-amphetamine increased impulsivity in rats housed socially (Perry et al., 2008). However, one study found decreased impulsivity following intraperitoneal D-amphetamine (Winstanley et al., 2003). Another study has shown that acute methylphenidate (5.6-10 mg/kg) can increase impulsivity in control rats (Wistar-Kyoto) but not in SHR rats (Wooters et al., 2011). Moreover, a low dose of methylphenidate (0.1 mg/kg) can decrease both impulsivity and premature responding (Puumala et al., 1996) while a higher dose (1 mg/kg) fails to do so (Puumala et al., 1996). However, the validity of these models to mimic impulsivity remains arguable, as they may not always accurately reflect human symptomatology (Sontag et al., 2010). In rodents and humans, impulsivity involves the hippocampus and the prefrontal cortex (Cummings, 1993; Kayser et al., 2012a; Kheramin et al., 2002). Finally, D-amphetamine increases impulsivity in healthy volunteers, but not in ADHD patients (Seo et al., 2008; Sostek et al., 1980).

Freely available psychostimulants

Caffeine is one of the few freely available stimulants. It belongs to the Xanthine family and possesses psychoactive effects (Nehlig et al., 1992). Caffeine exerts a blockade of every adenosine receptor (A1, A2 and A3 receptors). In humans, caffeine consumption leads to increased locomotor activity as well as enhanced vigilance but also decreases fatigue (Nehlig et al., 1992). Interestingly, one study reported that supplementation of methylphenidate (10 mg) with a low dose of caffeine, produced a stronger attenuation of behavioural symptoms in children, compared to methylphenidate alone (Garfinkel et al., 1981). In young adults, caffeine use can modulate ADHD
symptoms (Broderick et al., 2004), but a recent study observed that caffeine is only associated with ADHD symptomatology if caffeine is taken in combination with nicotine (Dosh et al., 2010). In young adolescents, one study reported a clear association between high caffeine consumption (4 or more beverages per day) and ADHD (Martin et al., 2008).

In young rats, early caffeine consumption leads to an increased locomotor activity after methylphenidate administration in adulthood, proving a cross-sensitisation (Boeck et al., 2009). However, some studies reported the beneficial effects of caffeine on ADHD symptoms. In an animal model of ADHD (juvenile administration of the dopamine and norepinephrine neurotoxin 6-hydroxy-dopamine), a 14-day chronic caffeine treatment improved spatial attention (Caballero et al., 2011), providing potential evidence for the use of caffeine as an adjuvant to psychostimulants. Another study on adolescent spontaneous hypertensive rats (another animal model of ADHD) revealed that chronic caffeine (2 mg/kg, twice a day) for 21 days can normalise ADHD traits (Pandolfo et al., 2013).

The other freely available psychostimulant is nicotine. Nicotine is a potent agonist of nicotine acetylcholine receptors. Extracted from tobacco plants, this chemical also belongs to the alkaloid family. Although the legal age limit for smoking in the UK is 18 years old, many abuses have been recorded. In fact, a recent European study found that 17.3% of adolescents smoke regularly every week in the UK (Pfortner et al., 2015). Current literature on nicotine and ADHD remains contradictory. While some clinical studies report a positive association between nicotine consumption and ADHD medication (Bron et al., 2013; Symmes et al., 2015), others fail to find any correlation in rats (Justo et al., 2010). A Dutch study reported that smoking amongst ADHD patients is twice the national average and that methylphenidate use increases tobacco consumption (Bron et al., 2013). Acute methylphenidate is also responsible for increases in nicotine consumption in ADHD patients (Vansickel et al., 2011) and non-ADHD patients (Rush et al., 2005). However, few studies have suggested that methylphenidate could be an efficient medication for reducing nicotine intake in ADHD patients (Covey et al., 2010; Gehricke et al., 2011; Hammerness et al., 2013), but one study proved its inefficacy (Hurt et al., 2011). These contradictory findings remain ambiguous and need to be further examined. While caffeine cannot be purely
considered as a cognitive enhancer (Lienert et al., 1966; Nehlig, 2010), nicotine has been proven efficient in enhancing cognition, in both rodents and humans (Griesar et al., 2002; Semenova et al., 2007; Warburton, 1992; Wignall et al., 2011; Young et al., 2004), as well as in young adults with ADHD (Potter et al., 2008).

A link between ADHD and substance abuse?

Substance abuse can also be found as a comorbidity in adult ADHD (Mao et al., 2014) and may be explained by the fact that it gives patients a sense of feeling normal, therefore accepted by society (Nehlin et al., 2014), a feeling that ADHD children have lost (Mueller et al., 2012; Whalen et al., 1981). Adult ADHD patients have also a higher risk of nicotine addiction (Ginsberg et al., 2014). Recent studies on adult ADHD patients have revealed the need to understand substance addiction in ADHD in an attempt to improve the difficult diagnosis in these patients as well as avoiding inadequate treatment (Crunelle et al., 2013; Matthys et al., 2014). Moreover, cocaine-dependent patients diagnosed with ADHD are more severely addicted to cocaine than cocaine-dependent users without ADHD (Daigre et al., 2013).

The relative risk of substance abuse among 208 ADHD adolescents treated with stimulants has been assessed in a recent Danish study (Dalsgaard et al., 2014). Here, the authors found that adolescent ADHD patients, compared to the background population, have a relatively higher risk of substance abuse than the general population as well as alcohol abuse. This study has also shown discrepancies in gender for later-life substance use disorder, females being the most susceptible. Four populations are therefore of interest: ADHD adolescents currently under medication, untreated ADHD adolescents, ADHD adults previously treated during their adolescence and, finally, ADHD adults that never received medication. However, current literature lacks data concerning long-term effects of ADHD medication during adolescence or childhood and substance abuse during later life.
Animal models of ADHD

Different animal models are currently available to mimic ADHD in rodents:

1- The spontaneous hypertensive rat (SHR). This model has been validated to behaviourally and biologically mimic ADHD symptoms (Adriani et al., 2003a; Meneses et al., 2011; Sagvolden, 2000; Sagvolden et al., 2009; Vendruscolo et al., 2009).

2- The 6-hydroxydopamine lesioned rat. Postnatal intracerebroventricular administration of 6-hydroxydopamine (6-OHDA) induces massive destruction of dopaminergic neurons in the substantia nigra, but has less destructive effects on dopamine neurons located in the ventral tegmental area and the prefrontal cortex (Kostrzewa et al., 2015). The loss of dopamine neurons functionally mimics ADHD and Parkinson’s disease (Caballero et al., 2011; Kostrzewa et al., 1994; Masuo et al., 2012; Moran-Gates et al., 2005; Russell, 2011; Thiele et al., 2012).

3- In mice, genetic manipulations have led to dopamine transporter knockout mice (DAT−/−). Indeed, mice that do not express the dopamine reuptake transporter are used as models for ADHD (Leo et al., 2013; Russell, 2011; Takamatsu et al., 2015; Yamashita et al., 2013).

4- Other models include the Naples high-excitability rat (NHE), the hypo-sexual rat, the Wistar-Kyoto hyperactive rat (WKHA), the polychlorinated biphenyl exposed rat (PCB), the acallosal mouse (corpus callosum agenesis), the lead-exposed mouse and rats reared in social isolation (Davids et al., 2003; Eubig et al., 2010; Johansen et al., 2014; Magara et al., 2000; Russell et al., 2005; Sagvolden et al., 2005).

While these models have proven truly beneficial in the understanding of ADHD, one should not forget that they do not always reflect the exact neurobiology observed in ADHD patients (Alsop, 2007; Sontag et al., 2010). Therefore, such models are limited in precisely mimicking ADHD symptoms. Finally, concerning the SHR strain, the hypertensive aspect can make handling difficult and drug administration inaccurate. Besides, spontaneous mortality in this particular strain occurs frequently, due to cerebral haemorrhage (Dupont et al., 1975).
Objectives

Pharmacotherapies for ADHD involve either methylphenidate, D-amphetamine, atomoxetine or a combination of these drugs. While both stimulants (MPH and D-amph) preferentially target dopamine transporters, the non-stimulant ATX potently targets both norepinephrine and dopamine transporters. However, the exact mechanisms underlying the efficiency of such pharmacotherapies are not yet completely understood. Glutamate neurotransmission appears to be altered in patients suffering from ADHD (Carrey et al., 2002; Grados et al., 2015; MacMaster et al., 2003; Moore et al., 2006), but some results have linked ADHD drugs to improved glutamatergic functions.

Here, using radiolabelled neurotransmitters, we will compare the in vitro effects of atomoxetine, D-amphetamine and methylphenidate on prefrontal cortex (PFC) and striatal slices in rats. We will also determine the consequences of these drugs on the regulation of the in vivo electrical activities of PFC pyramidal neurons, striatal medium spiny neurons, ventral tegmental area dopamine neurons and dorsal raphe nucleus serotonin neurons, using single cell extracellular electrophysiology. We will also test whether chronic methylphenidate treatment, during either adolescence or adulthood, could induce long-lasting effects on body growth, neuronal functions and drug cross-sensitisation. Moreover, depression-like behaviour in animals previously exposed to methylphenidate will be examined as well as sensitivity to D-amphetamine. Finally, we will assess if pre-treatments with either nicotine or caffeine can modulate neuronal responses to methylphenidate.
Chapter I – ADHD drugs induce *in vitro* neurotransmitter release.

I-1- Introduction

The mechanism by which ADHD drugs exert their therapeutic effects, particularly on attention and cognition processes, is not well understood. The paradoxical effect of ADHD drugs resides in both their abilities to calm hyperactivity while also improving cognition (De Sousa *et al.*, 2012). Although apparently safe to use, ADHD drugs require adequate dosing to avoid negative consequences (Spiller *et al.*, 2013; Vitiello, 2008; Wigal, 2009). The usefulness of such medication for ADHD patients is unquestionable, providing enhancement of both cognition and attention (Swanson *et al.*, 2011) as well as improvements of some of the ADHD symptoms. Many drugs are available to treat ADHD, such as methylphenidate, amphetamine salts, atomoxetine, bupropion, clonidine and reboxetine, although not all have received approval from the Food and Drug Administration (De Sousa *et al.*, 2012). However, the latter three are rarely given to patients. Both MPH and D-amph have immediate effects on ADHD symptoms, whereas ATX has a longer onset of action, usually between 4 to 8 weeks (Bushe *et al.*, 2014; Kolar *et al.*, 2008).

D-amphetamine and methylphenidate are strong inhibitors of the synaptic reuptake of both dopamine and norepinephrine. MPH potently inhibits the dopamine reuptake transporter \(K_i = 34 \text{ nM} \) as well as the norepinephrine reuptake transporter \(K_i = 339 \text{ nM} \) (Bymaster *et al.*, 2002). Other effects of D-amph include the inhibition of monoamine oxidase and blockade of vesicular transport of catecholamines \(K_i = 2 \text{ µM} \), Table 1) (Erickson *et al.*, 1996; Heal *et al.*, 2009). On the other hand, atomoxetine interacts very selectively with the norepinephrine transporter, with a \(K_i \) of 5 nM (Table 1) (Bymaster *et al.*, 2002). It is believed that the therapeutic effects of these drugs are associated with their abilities to stimulate dopamine release in the prefrontal cortex (PFC) (dela Pena *et al.*, 2015; Kalivas, 2007). The PFC is considered as one of the main brain regions involved in the behavioural-calming and cognition-enhancing effects of
ADHD drugs (Gamo et al., 2010). It plays a critical role in the control of higher cognitive function such as vigilance, attention, impulsivity and behavioural inhibition (Kieling et al., 2008). As a matter of fact, lesions within the orbitofrontal areas of the prefrontal cortex lead to altered social perception in humans while having anxiolytic effects and increasing impulsiveness in rodents (Deacon et al., 2003; Mah et al., 2004; Schneider et al., 2005). According to microdialysis studies, MPH and ATX, at therapeutic doses (1-3 mg/kg), increase dopamine release preferentially in prefrontal areas, with little or no effect in basal ganglia (Koda et al., 2010). Prefrontal dopamine, at the adequate concentration range, is thought to play a major positive role in cognition, attention and working memory, mainly through stimulation of dopamine D₁ receptors (Floresco, 2013). Nevertheless, dopamine innervations are relatively sparse in the PFC (Devoto et al., 2006). Because dopamine has an affinity for the NET (Kᵦ = 0.67 µM, Table 1) (Giros et al., 1994), it is believed that a significant part of the dopamine released in prefrontal areas is cleared by (or even originates from) norepinephrine terminals (Devoto et al., 2006; Moron et al., 2002). Moreover, dopamine and norepinephrine can be simultaneously co-released in specific noradrenergic terminals (Devoto et al., 2001) while dopamine can even be reuptaken by the norepinephrine reuptake transporter (Moron et al., 2002). In contrast, in the striatum, dopamine innervations are dense (Matsuda et al., 2009). Besides, the striatum is believed to play an important role in ADHD, as increased striatal dopamine transporters and low striatal activity have both been observed in adult ADHD patients (Fusar-Poli et al., 2012; Lou et al., 1989), two effects alleviated by MPH pharmacotherapy (Krause et al., 2000). Moreover, ADHD patients present altered cortico-striatal functional connectivity (Hong et al., 2015), a characteristic that was also observed in rodents following early postnatal dopamine lesions (Braz et al., 2015).

In the present chapter, the in vitro neurotransmitter release experiments aim to compare the effects of the main ADHD drugs on dopamine and norepinephrine neurotransmissions, in an attempt to characterise a possible common mechanism by which ADHD drugs alter monoamine neurotransmission. Here, we compare the effects of ADHD drugs on ³H-dopamine and ³H-norepinephrine efflux from rat PFC and striatal slices.
I-2- Material and Method

I-2-A- Subjects

Male Sprague-Dawley rats were purchased from Charles River, UK. Animals were housed in groups of 2-4 animals per cage, maintained at 20-22°C with humidity rates above 40% under a 12:12 L/D cycle with lights ON at 07h00 AM (Ante Meridiem). Animals were kept in polypropylene cages measuring 56x38x17 cm. Food and water were provided ad libitum. Animals were allowed a 3-day acclimatisation period after delivery. All experiments were performed during the light phase and with permission from the UK Home Office and De Montfort University Ethics Committee under the Project Licence 60/4333 and with the Personal Licence 60/13750.

I-2-B- In vitro radio-labelled neurotransmitter efflux

Seventy-one naïve rats weighing between 150 and 250 grams were sacrificed by cervical dislocation. The brain was quickly dissected out and immersed into ice-cold oxygenated Krebs buffer (NaCl 125 mM, MgSO₄ 1.2 mM, KCl 2.5 mM, CaCl₂ 2.5 mM, KH₂PO₄ 1.2 mM, NaHCO₃ 25 mM, glucose 10 mM and pargyline 10 μM, an inhibitor of monoamine catabolism, pH 7.4). The brain was then placed on an ice-cold platform for further dissection of either the prefrontal cortex (PFC, Fig. 1A) or the striatum (Fig. 1B). The tissue was then sliced into 350x350 μm prisms using a McIlwain tissue chopper. Constant oxygenation was maintained after this step. Prisms were then left for 20 min to rest at room temperature. Tissue prisms were then loaded for 40 minutes at 37°C with either ³H-dopamine (1.0 μCi/ml, specific activity 28.7 Ci/mmol) or ³H-norepinephrine (1.0 μCi/ml, specific activity 12-15 Ci/mmol; Perkin-Elmer USA) in the presence or absence of desipramine 10 μM to inhibit norepinephrine uptake. Once the loading completed, the prisms were then washed 3 times with fresh Krebs buffer before being divided into 6 even portions and loaded into 6 perfusion chambers. Throughout the experiment, all prisms and superfusion Krebs buffers were maintained at 37°C and under constant oxygenation. An equilibrating period of 40 minutes was initiated by superfusion of the chambers with Krebs buffer at 0.6 ml/min. In order to determine baseline outflow of dopamine, 3-4 samples were collected per chamber at intervals of 4 minutes. Sample were collected into vials and each sample
would hold 2.4 ml of perfusion liquid, to which scintillation liquid was added up to a total volume of 7 ml per vial. At the end of the experiment, all tissues were collected and dissolved with 1 ml of tissue solubiliser. Total tritium (\(^3\)H) quantities were measured in a liquid scintillation counter (Hidex, UK), from which disintegrations per minute were extracted. If necessary, the composition of the superfused Krebs buffer was altered. The low Na\(^+\) Krebs buffer consisted of a 20 mEq of NaCl (instead of 125 mEq) substituted by isotonic concentration of choline chloride. The Ca\(^{2+}\)-free Krebs buffer was made by omitting the CaCl\(_2\) in the buffer (CaCl\(_2\) 0 mM). In addition to the calcium-free Krebs buffer, a further intracellular calcium chelation was achieved by adding 50-100 µM of BAPTA-AM, a cell-permeable calcium chelator, to the Ca\(^{2+}\)-free Krebs buffer. A depolarising buffer was also tested by increasing KCl concentration from 2.5 to 20 mM. Superfusion of such potassium-rich buffer is known to induce sudden membrane depolarisation and neurotransmitter release (Ayata et al., 2000; Chen et al., 1996; Khvotchev et al., 2000; Nagai et al., 1998; Okuma et al., 1986; Zhao et al., 2001).

Figure 1: Regions of interest for in vitro neurotransmitter efflux experiments.
Prefrontal cortex (A) and striatum (B) locations. Shaded areas correspond to regions of interest for in vitro neurotransmitter releases. Scales represent distances (in mm) from the midline and the surface of the brain. Coronal slices adapted from Paxinos and Watson (1997). Cg1 cingulate cortex area, PrL prelimbic cortex, CPu caudate putamen.
I-2-C- Drugs

All drugs were purchased from Sigma (Sigma-Aldrich, UK) except for BAPTA-AM (Abcam, UK), atomoxetine and reboxetine (Sequoia Research, UK) as well as SCH23390 (Tocris, UK). The drugs were dissolved into normal or modified Krebs buffers, as appropriate, except for BAPTA-AM and desipramine that were firstly dissolved into DMSO (dimethyl-sulfoxide, 20%) as stock solutions before being diluted back into the appropriate buffers. The final concentration of DMSO in the buffer was below 0.02% (v/v).

I-2-D- Data analysis

All data are expressed as the mean±standard error of the mean (S.E.M.). Statistical analyses were performed using paired or unpaired Student's t-tests or one/two-way analysis of variance (ANOVA), followed by appropriate post-hoc Neuman–Keuls (one-way ANOVA) or Bonferroni tests (two-way ANOVA). The mixed model two-way ANOVA was used when sampling size varied across groups. Probabilities smaller than 0.05 were considered to be significant; n values refer to the number of samples used. Fractional efflux for each superfusate sample was calculated by dividing the amount of tritium in each sample by the total tritium left thereafter. The effect of a tested condition was assessed on at least 3 subsequent sample collections and averaged. Normalised efflux values are calculated for each chamber as the ratio between the mean tested values (generally from at least 3 collections) and average baseline values (usually 3-4 collections). All of the experiments presented were repeated on at least 3 animals. Fig. 2 shows an example of a typical experiment testing the effect of ATX on 3H-dopamine efflux from striatal prisms. In this chapter, a distinction between dopamine release and dopamine efflux/outflow was made. Indeed, dopamine release, arising from exocytosis, only occurs under in vivo or artificially-stimulated conditions (perfusions of KCl or D-amphetamine), while dopamine efflux/outflow occurs when prisms are not under stimulated conditions (Beani et al., 1984; Kahlig et al., 2005).
Figure 2: Time course example of a typical 3H-dopamine efflux experiment in the striatum.

Atomoxetine was superfused at 10 and 100 µM. Data shows the average fractional efflux from 6 perfusion chambers over time. In this and the following figures, n values indicate the number of tissue samples which have been tested (from which an average fractional efflux is calculated from 3-4 subsequent collections). **P<0.01, ***P<0.001 vs. baseline, Neuman-Keuls after significant repeated measures ANOVA.
I-3- Results

I-3-A- ADHD drugs induce dopamine efflux

I-3-A-1- In the prefrontal cortex

In the prefrontal cortex (PFC), the application of methylphenidate (100 µM), atomoxetine (100 µM) and D-amphetamine (10 µM) significantly increased dopamine efflux (respectively 52%, 300% and 84% over baseline, Fig. 3A). Interestingly, ATX elicited dopamine efflux in the frontal cortex in a dose-dependent manner. Indeed, rising concentrations of ATX, from 10 to 100 µM, all induced significant (p<0.001) dopamine efflux (Fig. 3B). Perfusion of ATX at 100 µM produced a considerable dopamine efflux, but may here trigger other mechanisms to explain such a high outflow. At this concentration of 100 µM, the NET blocker ATX elicits a massive release of efflux, increasing baseline levels by 400%. All drugs, except the very selective DAT inhibitor GBR-12909, promoted 3H-dopamine efflux when perfused at 100 µM, including the NET inhibitors desipramine and reboxetine (Fig. 3C). At 100 µM atomoxetine induced dopamine efflux at a significantly greater level (post-hoc test F(2,182)=11.66, p<0.001) than 100 µM of MPH (Fig. 3A), an effect not observed at 10 µM. Methylphenidate significantly induced dose-dependent dopamine efflux (Fig. 3D).
Figure 3: Dose-response of ADHD drugs and other selective uptake inhibitors on prefrontal cortex \(^{3}\text{H}\)-dopamine efflux.

(A): Superfusion of ATX, MPH or D-amph (100 µM) all significantly induced dopamine efflux with different level of efficacy. (B): ATX induces dopamine efflux in a dose-dependent manner. (C): Effects of other selective reuptake inhibitors on prefrontal dopamine release. Interestingly, desipramine (DMI) and reboxetine (REB) both significantly induced dopamine efflux when applied at 100 µM, while the selective DAT inhibitor GBR-12909 (10 and 100 µM) did not induce dopamine efflux. (D): MPH promotes dopamine efflux in a dose-dependent manner from 10 µM to 1 mM. MPH: methylphenidate, ATX: Atomoxetine, D-amph: D-amphetamine, DMI: desipramine, REB: reboxetine, GBR: GBR-12909. \(*P<0.05, **P<0.1, ***P<0.001\) vs. respective baseline, \$$ P<0.01, $$$ P<0.001\) vs specified conditions, Bonferroni after significant mixed model repeated measures two-way ANOVA.

When the loading of the slices with \(^{3}\text{H}\)-dopamine was made in the presence of desipramine (10 µM, to prevent norepinephrine terminal uptake and storage of \(^{3}\text{H}\)-dopamine), MPH and ATX exert a significant increase of dopamine efflux but only when applied at the concentration of 100 µM (Fig. 4) and to a lower extent than what was previously observed in desipramine-free (normal) condition, respectively with 38% and 17% lower levels of dopamine efflux (vs baseline condition). This indicates that blocking the norepinephrine transporter during the loading of the slices significantly reduces, but does not prevent, the ability of MPH to induce dopamine efflux.
Figure 4: Role of norepinephrine terminals in ATX-induced dopamine efflux. When prefrontal cortex tissues were loaded with tritiated dopamine in the presence of 10 µM of desipramine (NET inhibitor), 100 µM of ATX still promoted dopamine efflux, but to a level that is significantly lower than in desipramine-free conditions, indicating that ATX promotes dopamine efflux from both dopamine and noradrenergic terminals. ns: non-significant, *P<0.05, ***P<0.001 vs. respective baseline, $P<0.05$ vs. specified condition, Neuman-Keuls after significant ANOVA (A).

I-3-A-2- In the striatum

As observed in the PFC, all drugs tested dose-dependently stimulated dopamine efflux from striatal slices (Fig. 5A). When applied at 10 µM, both GBR-12909 and MPH significantly increased dopamine efflux, but with different efficacies (15% and 108% over baseline, respectively, Fig. 5B). Interestingly, ATX, but not reboxetine or desipramine, two other potent NET inhibitors, also significantly increased the efflux of dopamine by 42% over baseline (Fig. 5A,B), when tested at the concentration of 10 µM (p<0.001, Neuman-Keuls test after ANOVA). Reboxetine and desipramine both have Kᵢ values of over 10 µM for the dopamine transporter (Millan et al., 2001; Zhou, 2004), which is consistent with our study (Fig. 5B). As expected, D-amph, applied at 10 µM, induced strong dopamine release (437% over baseline). When tested at higher concentrations (100 µM), ATX elicited an unexpected and robust efflux of dopamine, like in the PFC, increasing baseline levels by more than 680%, which is significantly higher than the efflux produced by the potent DAT blockers MPH.
As observed in the prefrontal cortex, in the striatum, ATX also induced dopamine efflux in a dose-response manner (Fig. 5C). On the other hand, we did not observe any saturation in the striatum. Very interestingly, the DAT blocker Modafinil (IC₅₀ for dopamine reuptake of 4 µM) (Zolkowska et al., 2009), induced dopamine efflux only at 1000 µM (Fig. 5D). This result may be explained by the ability of Modafinil to act as a partial dopamine D₂ receptor agonist (Seeman et al., 2009) and by the higher concentration of drug perfusion needed in order to penetrate our tissue, compared to techniques using synaptosome assays. Both MPH and ATX perfusions significantly induce dopamine efflux in dose-dependent manners from 1 µM to 1 mM (Fig. 5E). These results suggest that ATX, and possibly the two other NET inhibitors desipramine and reboxetine, may interact with other targets in order to induce such strong dopamine efflux (7 folds over baseline), while other potent DAT blockers only increase striatal dopamine efflux by 3-4 folds and specific inhibitors such as GBR have very limited effects. Loading the striatal slices with ³H-dopamine in the presence of desipramine (10 µM) did not alter at all the ability of ATX to induce ³H-dopamine efflux at 100 µM, as it induced significantly greater efflux than under desipramine-free conditions (p<0.001, Neuman-Keuls after significant ANOVA, Fig. 6).
Figure 5: Dose-response of ADHD drugs and other selective uptake inhibitors on striatal 3H-dopamine efflux.

(A): Superfusion of either ATX (10 and 100 μM), MPH (10 and 100 μM) or D-amph (10 μM) all significantly induced dopamine efflux with different level of efficacy. ATX promoted an unexpected massive dopamine efflux from striatal slices at concentrations higher than 60 μM. (B): GBR-12909, desipramine (DMI) and reboxetine (REB) all significantly induced dopamine efflux when applied at 100 μM. (C): ATX promotes striatal dopamine efflux in a dose-dependent manner from 10 μM to 100 μM. (D): Dose response of Modafinil, another drug used for ADHD, on striatal dopamine efflux. Here, Modafinil significantly induced dopamine efflux only if applied at concentrations above 100 μM. (E): In the striatum, ATX is more efficient than MPH in inducing dopamine efflux at high concentrations. ***P<0.001 vs. respective baseline, $$$$P<0.001$ vs. specified condition (A-D) or vs. MPH (E), Neuman-Keuls (A-D) or Bonferroni (E) after significant one-way or two-way ANOVA.
Figure 6: Atomoxetine induces striatal dopamine efflux from dopamine terminals, but not noradrenergic terminals.

Contrary to what was observed in the prefrontal cortex, when striatal slices were loaded with tritiated dopamine in the presence of 10 µM of desipramine, 100 µM of ATX still promoted dopamine efflux to higher levels than in desipramine-free conditions, indicating that ATX promotes dopamine efflux from dopamine terminals but not noradrenergic terminals. ***P<0.001 vs. respective baseline, $$P<0.001$$ vs. specified condition, Neuman-Keuls after significant ANOVA.

I-3-A-3- Interaction between drugs

Pre-exposure of slices with ATX (100 µM), did prevent the releasing effect of MPH (100 µM) in the PFC, but not in the striatum, where efflux is stimulated with similar efficacy as in basal conditions (Fig. 7A). On the other hand, the pre-exposure of both PFC and striatal slices with MPH at 100 µM did not prevent the massive effect of ATX on dopamine efflux (Fig. 7A). This result suggests that ATX triggers dopamine efflux by a mechanism that is not dependent on the dopamine reuptake transporter, whilst MPH-induced dopamine efflux originates from the blockade of such a transporter. In both structures, D-amph-induced dopamine release was completely prevented when slices were previously perfused with MPH (Fig. 7B). Reciprocally, in both structures, MPH did not increase further the efflux of dopamine elicited by D-amph (10 µM). Dopamine efflux was even significantly decreased in striatal slices following MPH application (Fig. 7B). Interestingly, in the PFC, the outflow effects of ATX or D-amph were also partially reduced (in this case) by each other’s pre-administration (Fig. 8), an effect not observed in the striatum (not shown). However, such a dampening may be due to ceiling effects and require therefore further experiments.
Figure 7: Interactions between ADHD drugs on prefrontal cortex and striatal 3H-dopamine efflux.

(A): Pre-incubation with ATX (100 µM) prevented the outflow of dopamine induced by MPH (100 µM) in the prefrontal cortex, but not in the striatum. However, pre-incubation with MPH before ATX application did not reduce ATX effects in both regions. (B): In both regions, pre-exposure with MPH (100 µM) completely prevented the subsequent effects of D-amph. Similarly, pre-exposure with D-amph prevented or significantly reduced the effects of MPH (PFC and striatum, respectively). Here and in the following figures, co-perfusion of two drugs is represented by a + in the legends and denotes therefore addition of the last-mentioned drug into the buffer, already containing the first-mentioned drug. ns: non-significant, ***$P<0.001$ vs. respective baselines, +$P<0.05$, ++$P<0.01$, +++$P<0.0001$ vs. specified conditions. Newman-Keuls after significant ANOVA.
Figure 8: Interactions between atomoxetine and D-amphetamine on prefrontal cortex 3H-dopamine efflux.

In the prefrontal cortex, pre-incubation with either ATX (100 μM) or D-amph (10 μM) did not prevent the dopamine efflux induced by subsequent applications of either drug. **P<0.01, ***P<0.001 vs. respective baselines, +P<0.05 vs. specified conditions, Newman-Keuls after significant ANOVA.

I-3-A-4- Dependency of dopamine efflux by ADHD drugs upon sodium, calcium, vesicle integrity and KIR channels

Superfusion of striatal slices with an isotonic medium containing a low concentration of sodium (20 mEq instead of 125 mEq) increased significantly basal 3H-dopamine efflux by nearly 380% (Fig. 9A) and completely prevented both MPH and ATX-induced dopamine efflux (Fig. 9B). The dopamine transporter strongly depends upon balanced intracellular and extracellular sodium concentrations (Itokawa et al., 2002; Manepalli et al., 2012; Pramod et al., 2013; Vaughan et al., 2013). Extracellular sodium depletion also significantly reduced D-amph-induced dopamine release. As expected, D-amph (10 μM), ATX (100 μM) and MPH (100 μM) all produced additional effects on KCl-induced dopamine efflux (vs buffer only, respectively p<0.001, p<0.01 and p<0.05, Newman-Keuls after significant ANOVA, Fig. 10). Interestingly, D-amph was the most efficient of the three drugs (Fig. 10B,E). Ouabain (100 μM), a potent Na⁺/K⁺-ATPase inhibitor, also increased basal dopamine efflux (Fig. 11A) and prevented dopamine efflux induced by ATX (Fig. 11B), indicating that ATX-induced dopamine efflux may be dependent upon active processes and/or physiological electrochemical gradients. However, such effects are most probably due to a ceiling effect by ouabain. Efflux processed in calcium-free buffer did
not change the ability of ATX to elicit 3H-dopamine efflux from PFC or striatal slices (Fig. 12). On the other hand, the intracellular calcium chelator BAPTA-AM (50-100 µM), applied for 20 min before sample collection to the end of the experiment in combination with extracellular calcium depletion, significantly reduced ATX-induced 3H-dopamine efflux in the striatum (Fig. 13) but not MPH-induced dopamine efflux. When the potent depleting agent of monoamine vesicles reserpine was applied at 1 µM, large dopamine efflux were observed from striatal slices and this effect was significantly more pronounced ($F_{(1,51)}=173.7$, $p<0.01$, two-way ANOVA) than on PFC slices (Fig. 14). However, when the concentration of reserpine was increased to 10 µM, both regions produced stronger dopamine efflux, indicating a dose-response mechanism of reserpine on dopamine efflux. Reserpine, applied at 1 µM for 20 min before superfusion of PFC or striatal slices also significantly attenuated the effect of ATX on dopamine efflux (Fig. 15), but had no effect on MPH-induced striatal dopamine efflux (Fig. 16), indicating therefore that ATX, but not MPH, require catecholamine vesicle integrity in order to induce such a dopamine efflux.

![Figure 9: Sodium dependency of both methylphenidate and atomoxetine in inducing striatal tritiated dopamine efflux.](image-url)

(A) Superfusion of a buffer containing a low sodium concentration (20 mEq of Na$^{+}$) significantly increased basal dopamine outflow. ***$P<0.001$ vs. respective baselines, unpaired Student’s t-test. (B) Under these perfusion conditions, 100 µM of either ATX or MPH could not induce striatal dopamine efflux. However, 10 µM of D-amph significantly promoted dopamine efflux, but to a lower level than under physiological sodium concentration (125 mEq). ns: non-significant, *$P<0.05$ vs. respective baselines, unpaired Student’s t-test.
Figure 10: ADHD drugs produced additional effects on dopamine efflux from striatal slices when co-applied with a potassium-rich buffer.

(A) Superfusion of a buffer containing a high potassium concentration (20 mM of KCl) increased dopamine release in a reversible manner. The addition of 10 µM of D-amph (B), 100 µM of ATX (C) or 100 µM of MPH (D) significantly increased dopamine efflux when co-applied with KCl, assessed by increased \(S_2/S_1 \) ratios. D-amph was the most efficient of the three drugs used. Note the non-linear scale in B. *P<0.05, **P<0.01, ***P<0.001 vs. KCl 20 mM, ++P<0.01 vs. specified condition, Newman-Keuls after significant ANOVA.

Figure 11: Atomoxetine induces striatal dopamine efflux by a gradient-dependent mechanism.

(A) Superfusion of a buffer containing 100 µM of ouabain, a potent Na\(^+\)/K\(^+\)-ATPase inhibitor, significantly (p<0.001, unpaired Student’s t-test) increased basal dopamine outflow. (B) Under these perfusion conditions, 100 µM of ATX did not induce further striatal dopamine efflux, indicating that ATX may require physiological electrochemical gradients to induce dopamine outflow. ns: non-significant, most probably due to a ceiling effect, *P<0.05, **P<0.01 vs. respective baselines, Newman-Keuls after significant ANOVA.
Figure 12: Atomoxetine-induced dopamine efflux is not dependent upon extracellular calcium concentrations.

In the PFC and the striatum, superfusion of a calcium-free buffer (0 mEq of Ca\(^{2+}\)) did not reduce the capacity of ATX to induce dopamine efflux. ns: non-significant, *P<0.05, ***P<0.001 vs. respective baselines, Newman-Keuls after significant ANOVA.
Figure 13: Atomoxetine-induced dopamine efflux, but not methylphenidate-induced dopamine efflux, is dependent upon intracellular calcium concentrations. When intracellular calcium chelation was performed for 20 minutes before collection, using 50-100 µM of BAPTA-AM, together with the use of an extracellular calcium-free buffer, ATX-induced dopamine efflux was significantly reduced, an effect not observed with MPH.

BAPTA-AM: 1,3-bis(aminophenoxy)ethane-N-tetraacetic acid-acetoxymethyl ester, intracellular calcium chelator. ns: non-significant, *P<0.05, **P<0.01, ***P<0.001 vs. respective baselines, +++P<0.001 vs. control condition, Newman-Keuls after significant ANOVA.
Figure 14: Superfusion of reserpine induces prefrontal and striatal dopamine efflux.
Superfusion with reserpine (1 and 10 µM), a powerful depleting agent of monoamine vesicles, produced significant dopamine efflux from prefrontal cortex and striatal slices. *P<0.05, **P<0.01, ***P<0.001 vs. baseline outflow, $$P<0.01, $$$P<0.001 vs. PFC, Bonferroni after significant repeated measures two-way ANOVA.

Figure 15: Atomoxetine-induced dopamine efflux is dependent upon vesicle integrity.
When monoamine vesicles were depleted (1 µM of reserpine) for 20 minutes before collection, subsequent application of ATX on prefrontal cortex and striatal slices induced significantly lower dopamine efflux than under control conditions. *P<0.05 vs. respective baselines, ++P<0.01, +++P<0.001 vs. specified conditions, Newman-Keuls after significant ANOVA.
Figure 16: Dependency of methylphenidate on vesicle integrity to induce dopamine efflux.

In the prefrontal cortex, monoamine vesicle depletion prevented MPH-induced dopamine efflux, but not in the striatum, where MPH induced dopamine efflux to similar levels as under control conditions. ns: non-significant, $$$P<0.001$$ vs. respective baselines, $$P<0.001$$ vs. all other conditions, Newman-Keuls after significant ANOVA.

We then examined the possibility that ATX could induce dopamine efflux through the inwardly-rectifying K⁺ channels (Kᵢᵣ). Indeed, a previous study on frog oocytes has shown that ATX also interacts with the Gᵦ-protein-activated Kᵢᵣ channel with IC₅₀ values in the 30-50 micromolar range (Table 1) (Kobayashi et al., 2010). In our experiment, co-perfusion of 20 µM of SCH23390, a dopamine D₁ receptor antagonist as well as a Kᵢᵣ blocker (IC₅₀ of 268 nM) (Kuzhikandathil et al., 2002), combined with 100 µM of ATX, failed to reduce ATX-induced dopamine efflux in a small population of samples (n=3, Fig. 17). SCH23390 did not have an effect on its own on baseline dopamine outflow. These observations indicate that ATX induces dopamine outflow through interaction with other surface receptors or intracellular targets, some of which may still be unknown.
Atomoxetine-induced striatal dopamine efflux does not depend upon the inwardly rectifying potassium channels. Specific blockade of K\textsubscript{IR} channel, using 20 µM of SCH23390, did not prevent ATX-induced dopamine efflux in the striatum. ns: non-significant, **P<0.01, ***P<0.001 vs. baseline, Newman-Keuls after significant ANOVA.

I-3-B- ADHD drugs also induce PFC norepinephrine efflux

One hundred micromolars of ATX significantly induced prefrontal cortex norepinephrine efflux, (Fig. 18). However, the two other ADHD drugs, MPH and D-amph, did not induce norepinephrine efflux. Finally, we also tested whether ATX-induced norepinephrine efflux could be dependent upon alpha-2 receptors, as a previous study in monkeys has shown that ATX enhances memory tasks through indirect alpha-2 receptor stimulation (Gamo et al., 2010). Blockade of α2 receptors did not potentiate the subsequent effects of ATX in our model (Fig. 19).
Figure 18: Atomoxetine also induces \(^{3}\text{H}\)-norepinephrine efflux from prefrontal cortex slices.
Among the three ADHD drugs, only ATX (100 µM), significantly induced tritiated norepinephrine efflux from prefrontal cortex slices. **P<0.001 vs. respective baselines, Newman-Keuls after significant ANOVA.

Figure 19: Role of adrenergic alpha-2 receptors on atomoxetine-induced norepinephrine efflux.
Blockade of adrenergic alpha-2 receptors, using 20 µM of yohimbine, did not affect ATX-induced (10 and 100 µM) norepinephrine efflux. **P<0.01, ***P<0.001 vs. ATX 0 µM, Bonferroni after significant repeated measures two-way ANOVA.
I-4. Discussion

Here, we have demonstrated that, compared to other drugs, D-amph is able to elicit the greatest amount of dopamine release in both striatum and PFC when applied at the lowest concentration (10 µM, Fig. 3A), a concentration in the same range as brain levels achieved following administration of therapeutic (0.5-2 mg/kg) D-amph doses (Wallace, 2012). D-amphetamine is known to exert its effect on dopamine efflux by initial competition with dopamine at the dopamine reuptake transporter, followed by inhibition of the vesicular monoamine transporter 2 (VMAT2, IC50 of 3.3 µM, Table 1), required for dopamine reuptake from the cytosol into vesicles (Partilla et al., 2006; Teng et al., 1998). Blockade of VMAT2 by D-amph and methamphetamine induces dopamine release from the neuron through dopamine transporter reversal (Brown et al., 2000; Nickell et al., 2014; Sulzer et al., 1995). High intracellular dopamine concentrations induce cytotoxicity when D-amph is administered chronically, caused by apoptosis and oxidative stress (Steinkellner et al., 2011; Stumm et al., 1999). Other effects of D-amph on VMAT2 include redistribution of the transporter from the vesicular membrane to the cytosol (Eiden et al., 2011; Riddle et al., 2007). These dysregulations of brain monoamine concentrations induce hypersensitivity to later drug intake (Robinson et al., 1987) as well as hyperlocomotion (Antoniou et al., 1998; Sallinen et al., 1998) combined with stereotyped behaviour patterns (Sams-Dodd, 1998). Active derivatives of the metabolism of amphetamines, such as 4-hydroxyamphetamine and α-methyl-p-tyrosine, are known to accumulate in brain tissues following acute as well as chronic amphetamine administrations (Cho et al., 1975; Dougan et al., 1986a). These derivatives are known to respectively induce mydriasis (dilatation of the pupil) and inhibition of the production of catecholamines (Cho et al., 1978; Dougan et al., 1986b; Lepore, 1985). Interestingly, when 1 and 10 µM of D-amph were superfused onto striatal slices, dopamine release was significantly increased (Kantor et al., 1999; Kantor et al., 2002; Niddam et al., 1985) and promoted DAT surface trafficking (Furman et al., 2009). In non-human primates, chronic D-amph administration at 0.1-1 mg/kg twice a day for 1 to 4 weeks induced plasma D-amph concentration ranging from 0.4 to 1.5 µM (Ricart et al., 2005). Consistent with these findings, another study measured D-amph accumulation in rat brains following a single 3 mg/kg intraperitoneal injection and found peak plasma D-amph levels around 0.6 µM (Fuh et al., 2004). Moreover, striatal perfusion through microdialysis of an ACSF
solution containing 30 µM of D-amphetamine induced significant dopamine release in rats (Loweth et al., 2009). However, the use of the microdialysis technique is known to result in perfusate loss, up to 85% (Chefer et al., 2009; Hillman et al., 2005; Keeler et al., 2014; MacVane et al., 2014; Shippenberg et al., 2001). In humans, a single 0.7 mg/kg dose of D-amph produced plasma D-amph levels peaking at 0.6 µM (Kirkpatrick et al., 2012). In agreement with previous investigations (Jones et al., 1998; Sulzer et al., 1993), our findings suggest that D-amph enters the catecholamine terminals via a catecholamine uptake carrier system, given the preventive effect of MPH on D-amph-induced dopamine efflux (Fig. 5B) and the strict sodium dependency (Fig. 14B). Recent evidence suggests that uptake of D-amph, which competes very strongly with dopamine for the dopamine reuptake transporter (DAT), promotes sodium and to a lesser degree calcium influx inside the terminal to a level that is enough to promote reverse transport of dopamine (Robertson et al., 2009). These observations corroborate our results, to some extent, because MPH significantly reduced D-amph-induced striatal dopamine efflux when subsequently perfused after D-amph, as MPH blocks the necessary transporter for D-amph to further penetrate inside the synapse and prevents dopamine from leaving the cell through reverse transport (Fig. 7B). Indeed, a previous study using mice lacking the dopamine transporter observed that perfusion of striatal slices with D-amphetamine fails to induce extracellular dopamine efflux, an effect not observed using wild-type mice (Jones et al., 1998).

We have also demonstrated that pre-exposure with ATX prevents MPH-induced dopamine efflux in the PFC, but not in the striatum (Fig. 7A). This result suggests the involvement of the NET in MPH-dependent 3H-dopamine efflux in the PFC but not in the striatum, where noradrenergic innervations as well as norepinephrine reuptake transporter levels are low (Berridge et al., 1997; Moron et al., 2002; Swanson et al., 1975). Our data suggest that MPH, though a psychostimulant, may be a useful therapeutic tool to prevent D-amph from penetrating inside neuronal terminals and inducing persisting dysregulation of monoamine neurochemistry and behaviour (Fig. 7B). Besides, drugs that potently block dopamine transporters, including MPH, have been shown to prevent D-amph-induced dopamine release from HEK-293 cells expressing the human dopamine transporter (Simmler et al., 2014), in agreement with our study on dopamine neuron terminals. There have been several recent clinical trials investigating the efficacy of DAT blockers in reducing severe abuse-related effects of
amphetamine-like compounds (Howell et al., 2014). Indeed, the DAT blocker Modafinil was found to be efficient in reducing cocaine cravings and increasing the number of days without cocaine use (Anderson et al., 2009; Dackis et al., 2005; Dackis et al., 2003; Hart et al., 2008). Moreover, genetically-modified dopamine transporters can present decreased affinity for cocaine whilst still functioning efficiently for normal dopamine reuptake (Thomsen et al., 2009), therefore reducing the dopamine releasing effect of cocaine whilst maintaining physiological dopamine transporter activity. In rhesus monkeys, strategies aiming to inhibit monoamine reuptake have proven efficient in reducing cocaine self-administration, with agents such as selective dopamine and non-selective monoamine reuptake inhibitors as well as ester derivatives of GBR 12909 (Glowa et al., 1996; Negus et al., 2009). In humans, chronic amphetamine maintenance, also called agonist replacement therapy, can significantly decrease cocaine self-administration in chronic cocaine users (Greenwald et al., 2010; Rush et al., 2010).

MPH, at the same concentration as D-amph (10 µM), more moderately stimulated dopamine efflux in the striatum and in the PFC. Modafinil, another DAT blocker, also induced dopamine efflux effect in the striatum (Fig. 5D), a result that corroborates, at least in part, previous in vitro observations on synaptosomes where inhibition of dopamine uptake was observed following 1 µM of Modafinil (Zolkowska et al., 2009), which in fine produces extracellular dopamine concentration rises. Contrary to what was seen in the striatum, 100 µM of MPH does not increase further dopamine efflux in PFC slices previously exposed with 100 µM of ATX (Fig. 7A). Moreover, MPH-induced dopamine efflux is reduced in the PFC when the slices have been pre-loaded with the norepinephrine reuptake transporter (NET) inhibitor desipramine (Fig. 4). Therefore, our data supports previous assumptions that in the PFC, MPH elicits dopamine efflux mainly via an inhibition of the NET, suggesting that extracellular dopamine in the PFC originates not only from dopaminergic terminals but also from noradrenergic ones where it can act both as a precursor for norepinephrine and as a co-transmitter (Devoto et al., 2006; Devoto et al., 2003; Devoto et al., 2001; Devoto et al., 2004). Indeed, dopamine is transformed into norepinephrine by the dopamine beta-hydroxylase enzyme, requiring ascorbic acid and oxygen as co-factors (Kapoor et al., 2011; Rush et al., 1980). Some studies have suggested that both dopamine and norepinephrine are located within the same dense core vesicles in noradrenergic nerves (De Potter et al., 1997; Ou et al., 1998). Moreover, MPH has
similar *in vitro* affinity for the human NET (Kᵢ 0.1 µM) as for the DAT (Kᵢ 0.06 µM), whilst dopamine has an even higher affinity for the NET (Kᵢₓ = 0.67 µM) than for the DAT (Kᵢₓ = 2.54 µM, Table 1) (Giros *et al*., 1994; Han *et al*., 2006; Moron *et al*., 2002). Previous microdialysis and neurochemical studies on DAT knockout mice, as well as on naive rats, have shown that selective NET inhibitors increase prefrontal, but not striatal, dopamine efflux (Bymaster *et al*., 2002; Moron *et al*., 2002), in line with previous published observation, showing that in the striatum, the NET is responsible for dopamine uptake only when DAT levels reach critically low levels, as observed in Parkinson’s disease (Arai *et al*., 2008; Chotibut *et al*., 2012). This indicates the involvement of the NET in MPH-dependent ³H-dopamine efflux in the PFC but not in the striatum, where noradrenergic innervations as well as norepinephrine reuptake transporter levels are low (Berridge *et al*., 1997; Moron *et al*., 2002; Swanson *et al*., 1975). Taken together, these results suggest that MPH also induces dopamine efflux in the PFC through norepinephrine transporters blockade, but not in the striatum, where MPH rather targets dopamine transporters. We remain unable to evaluate the exact contribution of the dopamine transporter in the effects of MPH to induce dopamine efflux in the PFC in our experimental conditions. It probably contributes to increasing dopamine efflux as MPH can still exert its effects when the slices were previously loaded in the presence of desipramine. However, following the loading of the slices, redistributions of the tritiated dopamine within both dopamine and norepinephrine terminals could have occurred.

Microdialysis studies have demonstrated that MPH, administered at therapeutic doses (0.5-2 mg/kg), increased extracellular dopamine efflux in the PFC, but with limited or no effects in the striatum (Koda *et al*., 2010). However, when the authors raised the MPH administration to 10 mg/kg, increases of dopamine efflux were also observed in the striatum. On the other hand, our *in vitro* study shows a more efficient effect of MPH in the striatum than in the PFC (respectively Fig. 5A, 5E vs Fig. 3A, 3D), which is compatible with the dense dopaminergic innervations found in striatal regions (Matsuda *et al*., 2009). In the striatum, dopamine is cleared faster than in the PFC by the dopamine transporter because of higher DAT densities (Sesack *et al*., 1998). Our results can be explained by the fact that other mechanisms contribute to extracellular dopamine clearance in the PFC, as emphasised before (Wayment *et al*., 2001), while dopamine clearance in the striatum solely depends upon DAT activity. Moreover, *in vitro* DAT
blockade differs greatly from in vivo mechanisms, where compensatory mechanisms could occur, such as passive stabilisation, whereby adjacent neurons can uptake dopamine (Bergstrom et al., 2001; Fujimori et al., 1986; Woodward et al., 1995).

Conversely, the efficacy of MPH and ATX in inducing dopamine efflux in the PFC under our conditions is much lower than under in vivo conditions using the microdialysis techniques. Systemic administration of low doses of MPH or ATX (1-2 mg/kg), probably reaching a concentration in the low micromolar range near the catecholamine synapse (Balcioglu et al., 2009; Ding et al., 2004; Gerasimov et al., 2000), could stimulate dopamine efflux by more than 300% (Berridge et al., 2006; Bymaster et al., 2002). When administered on the intact brain, these drugs are likely to activate other neuronal circuitries potentiating further the release of dopamine in the PFC. Such activation may occur at local levels, as applications of MPH by reverse microdialysis in the PFC or the nucleus accumbens can still produce consistent large increase in dopamine efflux in vivo (Ahn et al., 2013; Nomikos et al., 1990; Schmeichel et al., 2013).

However, at a higher concentration (100 µM), ATX produced a surprisingly massive efflux of dopamine in both brain regions (Fig. 3A,B, 5A,C,E), so did the other two NET inhibitors, reboxetine and desipramine (Fig. 3C, 5B). Such an effect does not seem to be related to the selective blockade of the NET, as noradrenergic innervations are practically absent in the dorsal striatum, but not in the nucleus accumbens (Berridge et al., 1997; Ferrucci et al., 2013; Saigusa et al., 2012; Zhang et al., 1999), and this effect is identical when striatal slices have been preloaded with 3H-dopamine in the presence of the NET inhibitor desipramine (Fig. 6). In line with these results, previous studies found that the NET has a more limited impact in the reuptake of dopamine in the striatum than in the PFC (Berridge et al., 1997; Moron et al., 2002; Swanson et al., 1975). Whether this effect would be relevant in some clinical situations is an open question. Therapeutic doses of ATX (1-2 mg/kg) are believed to reach brain concentrations of ATX in the low micromolar range, up to 5 µM, and possibly more, as the drug can slowly accumulate within the brain after chronic administration (Ludolph et al., 2010). In our model, dose-responses of ATX in the striatum showed a massive effect on dopamine efflux starting at 30-50 µM (Fig. 5C). Atomoxetine is metabolized primarily by the polymorphically expressed enzyme cytochrome P450 CYP2D6.
In children with poor metabolising status, who represent just under 10% of all ADHD children (ter Laak et al., 2010), plasma ATX concentration can increase by 10 times the average therapeutic concentration (Loghin et al., 2013). One can assume that, in these patients, concentration in the brain may reach levels likely to significantly affect dopamine release in the striatum, according to our in vitro investigation (as ATX can induce dopamine efflux in the striatum at concentration as low as 1-10 µM, Fig. 5E,C).

The mechanism by which ATX induces this massive efflux needs to be fully clarified. Our study demonstrates that it is dependent on sodium (Fig. 14B) and on the integrity of the catecholamine vesicles (Fig. 15). In our experimental design of sodium depletion, no osmolarity shock occurred due to the isotonic addition of choline chloride, preventing therefore astrocyte swelling (Lauderdale et al., 2015; Schober et al., 2015), as seen previously (Lehmann et al., 1990). This sodium substitution is known to induce rapid membrane hyperpolarisation (Cvetkovic-Lopes et al., 2010), which should decrease dopamine efflux. Our results are compatible with the sodium dependency of dopamine reuptake (Wheeler et al., 1993). Indeed, under extracellular sodium depletion conditions, dopamine cannot be reuptaken by the DAT (Roitman et al., 1999), as sodium gradients are known to be the driving forces of dopamine transport. Interestingly, extracellular calcium depletion on its own is not sufficient to reduce ATX-induced dopamine efflux (Fig. 12), although calcium is crucial for successful spike generation (Llinas et al., 1981). However, intracellular calcium chelation, which has been found to successfully reduce neurotransmitter release (Adler et al., 1991; Chavez et al., 2006; Fredholm et al., 1993; Hunt et al., 1994), completely prevented ATX-induced dopamine efflux when combined with extracellular calcium depletion (Fig. 13 and 15). Taken together, these results indicate that ATX requires electrochemical gradients and intracellular calcium to induce dopamine efflux. In vivo, such outflows arise from vesicular fusion (Kasai, 1993; Simon et al., 1985; Stanley, 1997). We can hypothesise that ATX may interfere with the efflux of catecholamine-containing vesicles by interacting with an unknown intracellular target after being transported inside the terminal through a sodium dependent process (as ATX-induced effects were found to be sodium dependent), but different from the NET/DAT. Atomoxetine may also bind extracellularly to ion channels or proteins located on the neuronal membrane. Atomoxetine, compared to MPH, has a non-negligible affinity (K_i of 3.4 µM, Table 1).
for the dopamine vesicle transporter (Easton et al., 2007). Therefore ATX could be uptaken inside the dopaminergic terminals through a relatively low affinity transporter, but different from the DAT or NET, where it will then interact with the vesicular transporter to promote intracellular dopamine efflux, followed by extracellular dopamine efflux. However, the fact that we found that MPH can still increase dopamine efflux following ATX exposure indicates that dopamine does not leave the terminals via the dopamine transporter (unlike with D-amphetamine). Therefore, D-amph-like effects following ATX remains unlikely. To note, D-amph-induced monoamine release is also dependent on intracellular calcium concentration (Gnegy et al., 2004; Kantor et al., 2001). ATX has also been shown to interact with various ion channels with IC$_{50}$ values in the micromolar range, including the G$_i$-protein-activated inwardly rectifying K$^+$ channel (K$_{IR}$), which has an important function in regulating neuronal excitability (Kobayashi et al., 2010; Loghin et al., 2013; Scherer et al., 2009; Vandenberg et al., 2012). However, we did not find any contribution of the potassium inward rectifying channel (K$_{IR}$) in triggering ATX-induced dopamine efflux, as the perfusion of SCH23390, an inhibitor of dopamine D$_1$ receptor as well as a K$_{IR}$ blocker with an IC$_{50}$ of 268 nM (Kobayashi et al., 2010; Kuzhikandathil et al., 2002), did not prevent ATX-induced massive dopamine efflux in the striatum (Fig. 17). These results are in line with a previous study where the authors found no involvement of K$_{IR}$ channels in dopamine outflow (Martel et al., 2011). One could put forward the hypothesis that ATX activates other intracellular target or membrane receptors, such as sodium channels. However, ATX may also interact with other potassium channels, different from the K$_{IR}$ itself. Atomoxetine has been found to interact with NMDA channels, by exerting blockade of NMDA-induced currents in cortical neurons (IC$_{50}$ = 3 µM) (Ludolph et al., 2010). In the striatum, dopamine has been found to modulate NMDA currents via dopamine D$_1$ and D$_2$ receptors (Cepeda et al., 1998; Flores-Hernandez et al., 2002). However, more studies will be needed to understand the exact mechanism of ATX-induced dopamine efflux. Finally, in a preliminary study in our laboratory, superfusion of ATX did not induce any serotonin outflow from cortical slices.

In this chapter, we have demonstrated that the three ADHD drugs methylphenidate, D-amphetamine and atomoxetine can induce dopamine efflux from both cortical and striatal slices, with different efficacies. While both stimulants appeared to target the dopamine transporter system, ATX triggered an unexpected strong
dopamine efflux by other mechanisms. However, ATX requires vesicle integrity and physiological electrochemical gradients. When norepinephrine release was investigated, only ATX produced mild efflux, indicating that this effect is specific to dopaminergic terminals. The possible clinical implications of these unexpected effects induced by ATX should be investigated further.
Chapter II – Acute *in vivo* ADHD drug administration.

II-1- Introduction

Spike generation is closely linked to neuronal computation, which involves complex spatial and temporal summation (Tran-Van-Minh *et al.*, 2015). Although spike generation can be simplified *in silico* using mathematical models (Brown, 1999; Brown, 2000) adapted from previous observations (Hodgkin *et al.*, 1952; Llinas *et al.*, 1982; Morris *et al.*, 1981; Płatkiewicz *et al.*, 2010; Sato *et al.*, 1974), *in vivo* electrical activities result from far more complex input/output dendrite currents. In this next chapter, we will investigate how ADHD drugs modulate *in vivo* neuronal electrical spike generation, which is closely linked to neurotransmitter release.

One of the main brain regions involved in the behavioural-calming and cognition-enhancing effects of ADHD drugs is the prefrontal cortex (PFC) (Gamo *et al.*, 2010). It plays a critical role in the control of higher cognitive functions such as vigilance, attention, impulsivity and behavioural inhibition (Kieling *et al.*, 2008), as well as on the activity of the basal ganglia which controls movement and emotional behaviour. Recent evidence supports the role played by the glutamatergic system in the pathology and treatment of ADHD (Chang *et al.*, 2014), particularly in the PFC, the main cellular constituents of which are glutamate pyramidal neurons. In the PFC, there is evidence for both functional and anatomical interaction between catecholamine and glutamate systems. Most prefrontal catecholamine innervations, originating from the midbrain, terminate onto pyramidal glutamate neurons and modulate various cortico-cortical circuits, as well as cortical excitatory descending pathways. This includes the massive prefrontal projections to the basal ganglia, known to regulate, as part of a series of complex feedback loops, executive, motor and affective functions, impaired in ADHD (Carli *et al.*, 2014). As a result, changes in PFC catecholamine levels could affect these excitatory drives and, in turn, impact on catecholamine neurotransmission in many subcortical structures (Sullivan *et al.*, 2003). Furthermore, there is evidence in
the PFC for colocalisation of glutamate and catecholamine receptors, which can interact with each other on common intracellular signalling pathways and modulate synaptic transmission (Tseng et al., 2004; Urban et al., 2013a). Imaging studies in drug-naive ADHD patients indicate dysregulations of glutamatergic fronto-striatal circuits, which are strongly modulated by dopamine and norepinephrine, as well as reduction in the thickness and hypofunction of some specific subregions of the PFC (Cubillo et al., 2012). Attention has been drawn to the glutamate/N-Methyl-D-aspartate (NMDA) receptor. It has been well established that NMDA receptors have critical roles in excitatory synaptic transmission and plasticity underlying cognitive processes, short-term and long-term memory, long-term potentiation as well as motor function (Collingridge et al., 2013; Hasan et al., 2013; Henley et al., 2013; Jurado, 2014; Luscher et al., 2012; Rowland et al., 2005). There is evidence for genetic polymorphism of both the NR\textsubscript{2A} and the NR\textsubscript{2B} subunits of the NMDA receptor in ADHD patients (Dorval et al., 2007; Turic et al., 2004). Although not a pharmacological model for ADHD, glutamate NMDA receptor antagonists induce hyperlocomotion and disrupt attention as well as impulsivity control (Amitai et al., 2010). These NMDA antagonists also mitigate some of the neurochemical and behavioural effects of psychostimulants in animal models (Bristow et al., 1994).

In this second chapter, we will investigate to what extent acute in vivo ADHD drug administration can modulate the spontaneous or NMDA-induced electrical activities of silent or tonically active neurons, located either in the prefrontal cortex or in the striatum. Moreover, we will assess the impact of local dopamine on NMDA neurotransmission in PFC pyramidal neurons and striatal medium spiny neurons, using microiontophoretic techniques. We will also study the impact of such treatments on NMDA receptor 2B protein expression using western blot techniques. Finally, we will perform some behavioural experiments on locomotor activity to examine whether we could correlate our electrophysiological results with such behavioural pattern.
II-2- Material and Methods

II-2-A- Subjects

Male Sprague-Dawley rats were purchased from Charles River, UK. Animals were housed in groups of 2-4 per cage, maintained at 20-22°C with humidity rates above 40% under a 12:12 L/D cycle with lights ON at 07h00 AM. Food and water were provided ad libitum. Animals were allowed a 3-day acclimatization period after delivery. All experiments were performed during the light phase and with permission from the UK Home Office and De Montfort University Ethics Committee under the Project Licence 60/4333 and with the Personal Licence 60/13750.

II-2-B- *In vivo* extracellular single unit electrophysiology

One hundred and seventy-five naïve rats weighing between 220 and 330 grams were used. Animals were initially deeply anaesthetized with urethane (1.2–1.7 g/kg, intraperitoneal, with additional doses administered if necessary), secured to a stereotaxic frame and maintained at 36–37 °C with a heating pad. A catheter was inserted into the lateral tail vein to perform systemic drug administration. An incision was made across the top of the head and the edges of the skin drawn back to reveal the cranium. Bregma was identified and a hole was drilled through the bone at the coordinates of the prefrontal cortex (PFC) or the striatum, according to the atlas of Paxinos and Watson (Paxinos *et al.*, 1997). Electrodes were manufactured in-house from borosilicate capillaries (1.5 mm, Harvard Apparatus Ltd., UK), pulled on a PP-830 vertical electrode puller (Narishige, Japan) and filled by hand with an electrolyte solution of NaCl 147 mM. The tip of the electrode was broken down under a microscope to an external diameter of 1-1.5 μm. Typical electrode resistance was in the range 4-8 MΩ. Single-unit recordings with iontophoresis drug application were made using five-barrel glass micropipettes (World Precision Instruments, UK). The central recording barrel was filled with NaCl 147 mM. The side barrels were filled with either: NaCl 147 mM, N-methyl-D-aspartate (NMDA, 30 mM, pH 7-8, Sigma, St. Louis, MO), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA, 5 mM, pH 7-8, Abcam, UK), dopamine 20 mM, MPH 20 mM, D-amphetamine 20 mM, all dissolved into 147 mM of NaCl, or a combination of the above and NaCl 2 M for current
balancing, although we later found that current balancing was not necessary while using low currents (0-20 nA). NMDA or AMPA pulses were applied during 40-70 seconds onto prefrontal cortex (PFC) glutamatergic neurons at regular intervals (80-100 s). Outputs from the electrode were sent to a Neurolog AC pre-amplifier and amplifier (Digitimer, UK). If necessary, signal amplification was manually adjusted to record whole neuronal action potential amplitudes. Signals were filtered and sent to an audio amplifier, a Tektronix 2201 digital storage oscilloscope and a 1401 interface connected to a computer running Spike 2 (CED, UK) for data capture and analysis. Descent of the electrode was carried out using a hydraulic micromanipulator (Narishige, MO-103, Japan).

Coordinates for the prefrontal cortex were (Fig. 20A): anteroposterior 2.5-3.7 mm to Bregma, lateral 0.3-2 mm, dorsoventral 1-4.7 mm below cortical surface. Putative pyramidal glutamatergic neurons were identified according to previous electrophysiological criteria (Gronier, 2011; Wang et al., 2011): a broad action potential (1 ms), with a biphasic or triphasic, large waveform, starting with a positive inflection, a relatively slow firing rate typically between 1 and 50 spikes/10 s and an irregular firing pattern. A burst activity of PFC pyramidal neuron is characterised as at least two bursts occurring within 45 ms or less and followed by a silence period of at least 90 ms. Compared to single spikes, bursts release greater quantities of neurotransmitters (Bean et al., 1991; Gonon, 1988; Oster et al., 2015), resulting in greater occupancies of postsynaptic receptors.

GABAergic medium spiny neurons (MSN) were found in the striatum (Fig. 20B) at the following coordinates: anteroposterior 2-3.7 mm to Bregma, lateral 0.2-2 mm, dorsoventral 5-9 mm below cortical surface. Presumed medium spiny neurons were identified according to previous electrophysiological criteria such as a very low level of spontaneous activity or even no spontaneous activity (Galvan et al., 2012; Mallet et al., 2005), in combination with a long-lasting action potential waveform, usually above 1 ms (McGinty et al., 2008; Murray et al., 2015). These neurons can be easily distinguished from both cholinergic and GABAergic interneurons, which respectively display spontaneous discharges and thinner action potentials (Lim et al., 2014; McGinty et al., 2008; Murray et al., 2015; Wilson et al., 1990).
Figure 20: Areas of interest for in vivo single-cell extracellular electrophysiological recordings.
Shaded areas correspond to areas of interest for recordings of putative PFC glutamatergic pyramidal neurons (A) or putative GABAergic striatal medium spiny neurons (B). Scales represent distances (in mm) from the midline and the surface of the brain. Coronal slices adapted from Paxinos and Watson (1997). Cg1 cingulate cortex area, PrL prelimbic cortex, CPu caudate putamen.

GABAergic MSN receive strong GABA inputs from striatal GABA interneurons, also called feed-forward inhibition (Mallet et al., 2006; Mallet et al., 2005), explaining their very low or silent baseline firing activities. Such low spontaneous discharges are also the consequence of the inhibition of these medium spiny neurons by other medium spiny neurons, which represent lateral inhibition (Moyer et al., 2014). In the rat striatum, MSN represent 95% of all neurons (Jiang et al., 1991; Kemp et al., 1971; Mallet et al., 2006; Murray et al., 2015), while cholinergic interneurons represent up to 5% of all neurons (Cachope et al., 2012). Cholinergic interneurons strongly modulate the activity of MSN within the striatum (Zhou et al., 2002). In our experiments, cholinergic interneurons were excluded from our recordings, as only medium spiny neurons (but not low-firing cholinergic interneurons) are silent and also display glutamate-induced (NMDA iontophoresis) firing rate excitation (Galati et al., 2008; Sandstrom et al., 2003). However, we cannot totally exclude that some extremely low-firing “tonically” active cholinergic interneurons might be included within this study, even if they only represent 1-2% of all striatal neurons (Bernacer et al., 2007; Matamales et al., 2016; Nelson et al., 2014). Extensive literature now exists for the distinction between striatal GABAergic and cholinergic interneurons (Adler et al., 2013; Chuhma et al., 2011; Kawaguchi et al., 1997; Stalnaker et al., 2016).
II-2-C- Behaviour

Psychostimulants are known to alter locomotion (Amini et al., 2004; Paulus et al., 1991), activity (Fang et al., 1998), grooming (Taylor et al., 2010; Wooters et al., 2009), scratching (Antoniou et al., 1998; Malin et al., 2009) and stereotypy (Bonasera et al., 2008; Rebec et al., 1997). Therefore, the consequences of psychostimulants on such behaviours were assessed.

Twelve naïve rats weighing 250 grams were housed individually at the beginning of the behavioural experiments. All drugs were dissolved into saline. Animals received a single intraperitoneal injection of either : 0.8 ml/kg of saline (NaCl 147 mM), 5 mg/kg of methylphenidate or 3 mg/kg of D-amphetamine. Animals were then scored for behavioural parameters during 15 minute time periods and up to a total of 60 minutes. Counting of well-defined behavioural traits such as rearing, scratching, grooming, jumping, running, climbing, catalepsy and stereotypical movements were done manually. At the end of the 60 minute observation period, animals were sacrificed by cervical dislocation and brains were quickly removed, dissected and immersed into liquid nitrogen. Brain regions were kept at -80°C for further protein analysis using western blot techniques.

II-2-D- Western blot protein quantification

Following behavioural experiments, brain tissues were immediately dissected on an ice-cold platform and before being immersed in liquid nitrogen. Tissues were stored at -80°C until further analysis. Brain tissue was homogenised in an ice-cold lysis buffer (radio-immuno-precipitation buffer, RIPA) containing: 150 mM NaCl, 1% Triton-X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl, protease and phosphatase inhibitors, pH 8. Tissue homogenates were made using a glass potter and were then centrifuged at 12000 rpm at 4°C for 20 minutes. Supernatants were kept for further analysis and total protein quantification was performed using bovine serum albumin (BSA) standards and the Bradford assay. Aliquots of protein lysates (20μg) were separated on 4-20% SDS gels (Biorad, UK) and transferred onto nitrocellulose membranes (GE Healthcare, USA) at 400 mA (constant current) for 1h. After transfer, membranes were stained with Ponceau red to help visualise correct protein transfer.
Membrane saturation was then performed for 1 hour at room temperature in a Tris buffer saline solution (20mM Tris- HCl, 150mM NaCl, pH 7.6) containing 5% of BSA and 0.1% of Tween 20 (TBS-T-BSA). The immuno-reaction was carried out overnight at 4°C in TBS-T-BSA containing both NMDA$_{2B}$ and β-actin polyclonal primary antibodies, each diluted at 1:5000 (v/v). After being washed three times with TBS-T (5 min each), membranes were incubated with the corresponding secondary IgG-coupled horseradish peroxidase antibody diluted at 1:5000 in TBS-T-BSA (v/v) for 1h and at room temperature. The nitrocellulose sheets were rinsed three times in TBS-T (5min each) before developing the reaction with ECL (Biorad). Results were recorded on X-ray films (Kodak, USA).

II-2-E Data analysis

All data are expressed as the mean±standard error of the mean (SEM). Statistical analyses were performed using paired or unpaired Student’s t-tests or one/two-way analysis of variance (ANOVA), followed, if appropriate, by Neuman–Keuls (one-way ANOVA) or Bonferroni tests (two-way ANOVA). Probabilities smaller than 0.05 were considered to be significant; n values refer to the number of cells tested or animals used.

For electrophysiology, the mean basal firing activity was evaluated after the neuron had attained a stable firing rate, generally after at least 5 min of recording. Pre-drug values of firing rate were obtained by averaging the firing rate over a period of at least 4 min immediately prior to the intravenous administration while post-drug values were obtained by averaging the firing over a period of 5 min following drug administration. Individual change in basal firing activity was considered significant following drug (or saline) administration when the post-drug value was significantly different from the pre-drug value (determined as indicated above, paired Student’s t-test analysis). When neurons with very low spontaneous activity were recorded (baseline activity below 4 spikes per 10 seconds), a change of more than 5 spikes per 10 seconds was considered significant, or if the analysis of 100 spikes before and after drug administration led to significant unpaired Student’s t-test for each neuron tested this way. These two methods of analysis did not differ in the results obtained. When appropriate, portions of recording involving iontophoretic application of excitatory
substances were excluded from these calculations. Proportions of a specific type of response in two different groups of animals were also compared using the Fisher’s exact test (comparing proportions of responses and no response/opposite responses in two groups). The response of neurons to iontophoretic applications of NMDA or AMPA were assessed by subtracting the mean baseline activity measured immediately before the application (typically during the last 50 s before the application) of the drug from the mean activity obtained during the application of the drug (typically during the first 50 s of the application). Responses were expressed as the number of supplementary spikes (over baseline activity) per 10 nA of NMDA or per 5 nA of AMPA (as these currents were systematically administered to neurons). Effects of drugs/saline were examined by comparing the averaged response of at least three subsequent applications of NMDA/AMPA occurring immediately before or after the drug administration. For an individual neuron, a change in baseline, NMDA- or AMPA-induced firing rates (defined as the % difference between pre-drug and post-drug values) of more than 20% was considered significant, as observed in other electrophysiology studies (Conrad et al., 2009; Hu et al., 2011; Mulkey et al., 2003; Roland et al., 2011; Wang et al., 1998). Although we acknowledge that this 20% cut-off value may seem arbitrary at first, one study reported that no more than 20% of the variability in firing of an individual neuron could be predicted from the activity of its neighbours (Shlens et al., 2009). Therefore, we considered a drug to have a significant effect on the firing rate of an individual neuron if baseline firing varied by 20% or more (increase or decrease). All burst results are reported as the % of spikes in burst.

For behavioural experiments, the sum of each behavioural trait occurring during 15 minute interval periods was plotted against the type of drug administered. Results are expressed as the mean±standard error of the mean (SEM) of counts for each trait per group.

NMDA$_{2B}$ protein quantification was analysed using MCID software (GE Healthcare, USA) following densitometric analysis of Western blot autoradiograms. The expression of the NR$_{2B}$ protein was normalized to the housekeeping protein β-actin. Data were expressed as a percentage of the control group (saline, mean±standard error of the mean).
II-3- Results

II-3-A- Neuronal population included in the present study

Only one neuron per rat (n=175 animals) was tested with each of the ADHD drugs, unless otherwise stated. All neurons included in the present data (n=230) were recorded in the dorsal part of the medial PFC (n=219) in subregions which include the cingulate and the prelimbic cortex and the medial part of the frontal cortex as well as in the striatum (n=11). Some recording sites were marked by ejection of pontamine blue (n=13, Fig. 21A) and were confirmed to be within the PFC at similar locations from what was determined from stereotaxic measurements. Moreover, pyramidal neurons were discriminated from other neurons (such as interneurons) according to their typical action potential shapes (Fig. 21B), such as a total action potential length of more than 1 ms, displaying a triphasic and large waveform, starting with a positive inflection (depolarisation) and presenting irregular slow firing rates typically between 1 and 50 spikes/10 s, sometimes with burst activity (two spikes occurring at an interval of 45 ms or less, followed by a silence period of at least 90 ms). The effects of ADHD drugs were investigated on neurons that were spontaneously active (n=103) and on neurons with low firing activity (n=45, firing rate <4 spikes/10 s, arbitral cut-off). These neurons were detected by recording neuronal activity using an iontophoretic electrode and applying small current pulses of NMDA or AMPA, which induced reversible neuronal activations. Spontaneously active neurons were usually recorded with single-barrel electrodes and low-firing neurons with multi-barrel ones. However, a few spontaneously active neurons (n=22) were also recorded with multi-barrel electrodes. Low-firing neurons and spontaneously active neurons did not differ in their action potential characteristics. When the vehicle was injected (saline, n=28, Fig. 21C), neurons did not display any significant change in firing, even during a long recording period (>2000 s), as already observed (Gronier, 2011).
Figure 21: In vivo PFC pyramidal neuron recording example.

(A): Recording coordinates of 13 putative pyramidal neurons located in the prefrontal cortex. Ejection of pontamine blue (~400 nA, 20 min) was performed after some recordings to confirm stereotaxic coordinates. Each dot represents the location of one recording (n=13), determined using stereotaxic coordinates. This diagram is a stack of recordings ranging from +2 to +3.5 mm anteroposterior from Bregma. Scales represent distances (in mm) from the midline and the surface of the brain. Reproduced from Paxinos and Watson (1997). Recordings performed further than 1.9 mm from midline (arbitral cut-off, determined using stereotaxic coordinates) were excluded (n=3, red dots).

(B): Typical action potential waveform (or spike) of a PFC glutamatergic pyramidal neuron. Note that the waveform can be divided into three phases (initial positive depolarisation, repolarisation and hyperpolarisation). Only neurons which displayed such features were recorded. The black bar represents a scale corresponding to 1 millisecond.

(C): Typical electrophysiological recording of a PFC pyramidal neuron showing the firing rate (number of spikes generated per 10 seconds, represented by each vertical histogram) over a time course, in seconds (s). Please note that saline intravenous administration (0.2 ml/kg) did not alter the firing rate of this neuron.
II-3-B- Methylphenidate and D-amphetamine increase pyramidal neuron activity by a dopamine D₁ receptor dependent mechanism

We have found, in a small population of spontaneously active neurons (n=6), that 3 mg/kg of intravenous methylphenidate, a slightly higher dose to what is used in clinics, significantly increased the basal firing activity of PFC neurons (p<0.05, Student’s paired t-test, Fig. 22A). In another population of low-firing neurons (n=7, firing activity below 4 spikes per 10 seconds, arbitral cut-off) 3 mg/kg of MPH fails to significantly increase neuronal firing activities (Fig. 22B), although significant firing rate activations (more than a 2-fold increase) were observed in 5 out of 7 neurons. We have also observed a small reduction of this excitatory effect following the administration of SCH23390, a dopamine D₁ receptor antagonist, in three out of four neurons tested this way (75%), in complete agreement with a previous study from our laboratory (Gronier, 2011). In our laboratory, the excitatory effect of MPH on the basal firing activity of PFC neurons has previously been demonstrated in a larger population (n=28) of PFC neurons and was found to be partially reversed (return of the firing rate to its baseline level) in 55% of neurons following the administration of SCH23390 (0.6 mg/kg), a drug that exerted no effects on its own on the basal firing activity of PFC neurons (Gronier, 2011).

Figure 22: Methylphenidate preferentially increases the firing rate of the spontaneously active PFC neurons through a mechanism partially dependent on dopamine D₁ receptors.

Methylphenidate, administered intravenously at 3 mg/kg, significantly increased the firing rate of spontaneously active pyramidal neurons (A), but not of low-firing neurons (firing rate below 4 spikes per 10 seconds) (B). Administration of the D₁ receptor antagonist SCH 23390 (0.6 mg/kg) slightly decreased the activation of firing rate elicited by MPH on spontaneously active neurons. Here and in subsequent figures, the same neurons were studied in the complete sequence. ns: non-significant, *P< 0.05 vs. baseline, Newman–Keuls test after significant ANOVA.
In a group of 17 spontaneously active neurons, D-amphetamine was cumulatively administered up to a dose of 9 mg/kg (Fig. 23A), by consecutively injecting intravenous doses of 1, 2, 3 and 3 mg/kg. D-amph induced a significant increase of 34% and 207% in mean firing activity of PFC neurons, versus initial basal firing, at the cumulative dose of 3 and 6 mg/kg, respectively (p<0.01, compared to baseline levels for the 3 and 6 mg/kg doses, respectively, Newman-Keuls test after significant repeated measures ANOVA, n=17). Activity remained unchanged at the highest dose (9 mg/kg) compared to the 6 mg/kg dose. Three spontaneously active neurons (17%) remained insensitive to D-amph administration and only one neuron exhibited a progressive reduction in firing activity during the course of the cumulative administration of the drug. In another group of low-firing neurons (n=13, firing activity below 4 spikes per 10 seconds), 3 mg/kg of intravenous D-amphetamine significantly increased firing activities by 5 folds over baseline (Fig. 23B). While the majority of neurons (6/13, 46%) exhibited firing activity increases over the course of D-amph administration, 2 neurons (15%) responded by decreases of firing rate, while 5 neurons (39%) remained insensitive to any of the cumulative doses.
Figure 23: D-amphetamine dose-dependently increased the firing rate of PFC neurons through a dopamine D₁ receptor dependent mechanism.

Starting at 3 mg/kg, cumulative doses of D-amph significantly increased the firing rates of both spontaneously active (A) and silent neurons (B). However, in another neuronal population, doses of D-amph in the range of 0.5–1 mg/kg did not induce any significant change of basal firing rates (C). (D): Following cumulative administration of D-amph, selective blockade of dopamine D₁ receptors, using SCH23390 (0.6 mg/kg) significantly decreased the activation of firing rate elicited by D-amph. (E): Typical firing rate histogram of a prefrontal cortex neuron during D-amph and SCH23390 administrations. Boxed is shown a typical action potential shape of this pyramidal neuron. Here and in the following boxes, the horizontal black bars below the waveforms represent a 1 ms time interval. Note that in this neuron, a transient firing rate reduction was observed, as seen in few other recordings. Also, note that in this neuron, SCH23390 administration strongly reduced the firing rate following cumulative doses of D-amph (6 mg/kg). *P< 0.05, **P<0.01 vs. baseline, +++P<0.01 vs. specified condition, Newman–Keuls test after significant repeated-measures ANOVA.

When tested at lower doses (0.5–1 mg/kg) in a larger population of neurons (n=36), D-amph did not have an overall significant effect on basal activity (Fig. 23C), although 12/36 neurons (33%) had their firing activity significantly increased (individual firing activity increasing by at least 5 spikes/10 seconds or significant unpaired Student’s t-test when 100 spikes were analysed before and after drug administration in each neuron recorded) compared to their respective baseline levels. Moreover, in this population of 36 neurons treated with low doses of D-amph, the proportion of neurons responding by an increase in firing activity is significantly higher
(33%) compared to neurons treated with saline, where only 3.5% of all neurons responded by an increase in firing rate following saline administration (p<0.05, Fisher’s exact test). Similarly to what was observed with methylphenidate, Fig. 23D,E shows that the increase in firing activity elicited by cumulative doses of D-amph (6–9 mg/kg) is significantly attenuated by the subsequent administration of 0.6 mg/kg of the D₁ receptor antagonist SCH23390 (p<0.01 compared to levels obtained after 6-9 mg/kg of D-amph, Newman-Keuls test after significant repeated measures ANOVA). Complete reversal occurred in 9 out of 15 neurons tested this way (60%), while the firings of 6 neurons were not affected following SCH23390, despite D-amph was found to more than double their basal firing activities (Table 2). One should note that transient firing rate reduction is sometimes observed, as shown in Fig. 23E. Such temporary firing rate inhibitions are often recovered during the recording period, usually within 100-200 seconds, as also observed in Fig. 23E. In 2 out of 4 neurons, pre-administration of SCH23390 at 0.8 mg/kg successfully prevented D-amph-induced firing activation of pyramidal neurons, although there was more than a two-fold increase of firing activities in the 2 other neurons (Fig. 24A). Interestingly, blockade of both dopamine D₁ receptors and alpha-1 receptors (respectively with 0.8 mg/kg of SCH23390 and 0.6 mg/kg of prazosin) completely prevented the subsequent D-amph-induced firing activation, even with doses of D-amphetamine reaching 4 mg/kg (Fig. 24B).
Figure 24: D-amphetamine requires functional dopamine D₁ and adrenergic alpha-1 receptors to induce firing rate increases.
Dopamine D₁ receptor blockade (SCH23390 0.8 mg/kg) alone (A) only partially prevented the subsequent D-amph-induced firing rate activation of PFC neurons, an effect totally prevented by both dopamine D₁ (SCH23390 0.8 mg/kg) and adrenergic alpha-1 receptor (prazosin 0.6 mg/kg) blockades (B). Note that SCH23390 and prazosin have no action on their own on firing rate levels.

II-3-C- Dose-dependent activating effects of ATX and effects of selective catecholamine antagonists on ATX-induced firing activation

Atomoxetine was cumulatively administered up to a dose of 9 mg/kg, by injecting sequential doses of 1, 2, 3 and 3 mg/kg. At clinically relevant doses (1 and 3 mg/kg) ATX did not increase significantly the basal activity of spontaneously active pyramidal neurons (Fig. 25A). A cumulative dose of 6 mg/kg significantly increased firing rate by 69% over baseline (p<0.001, Student’s paired t-test). Ten neurons were further injected with a cumulative dose of 9 mg/kg of ATX, but this dose did not increase further the firing activities of spontaneously active neurons. When tested on silent neurons (n=7), a cumulative dose of ATX reaching 6 mg/kg also significantly increased firing activity very potently (p<0.05, Student’s paired t-test, Fig. 25B). Interestingly, unlike methylphenidate or D-amphetamine, the same dose of ATX more potently increases firing activities of silent neurons than spontaneously active neurons. Indeed, 6 mg/kg of ATX increases baseline firing activity by 69% in spontaneously active neurons and induced massive firing activity enhancement in almost silent neurons (see paragraph below).
We have found previously that the different selective monoamine receptor antagonists SCH23390, prazosin and yohimbine exerted no effects on their own on the basal firing activity of PFC neurons (Gronier 2011). We then confirmed previous established data regarding neuronal insensitivity to yohimbine 1 mg/kg, SCH23390 0.6 mg/kg and prazosin 1 mg/kg (respectively n=5, n=5 and n=4). As observed before in our laboratory (Gronier 2011), these selective monoamine receptor antagonists exerted no effects on their own on the basal firing activity of PFC neurons compared to respective baseline levels (Fig. 24B, 25C, paired Student’s t-test). In contrast to our previous findings with MPH and D-amph, administration of the D₁ dopamine receptor antagonist SCH23390 did not significantly reduce the mean excitatory effect produced by cumulative doses of ATX (Newman-Keuls test after significant repeated measures ANOVA, Fig. 25C, Table 1). However, in three out of seven neurons tested, a reduction of activation by more than 30% was observed. Similarly, administration of the α₁ adrenoceptor antagonist prazosin, following cumulative doses of ATX, had no significant effect on the neuronal activation induced by ATX (Fig. 26A), although in three neurons out of seven tested, ATX-induced activation was reduced by more than 50% following prazosin administration. Fig. 26B represents the firing histogram of such a neuron whose firing activation induced by ATX was reduced by prazosin. In a group of seven neurons initially insensitive to ATX (cumulative doses reaching 3 mg/kg produced no significant change in firing activity), the α₂ adrenergic antagonist yohimbine (1 mg/kg) promoted a significant activation of firing (p<0.01, compared to values obtained in baseline conditions or after ATX, Newman-Keuls test after significant repeated measures ANOVA, Fig. 26C). Moreover, a further administration of the dopamine D₁ antagonist SCH23390 reversed this stimulatory effect in two out of the four neurons were tested this way (Fig. 26D).
Figure 25: Effects of selective dopamine D₁ receptor antagonism on atomoxetine-induced activation of PFC neurons.

Administration of ATX, at a cumulative dose of 6 mg/kg, significantly increased the firing rates of spontaneously active (A) and silent neurons (B). (C): Neither yohimbine (1 mg/kg), SCH23390 (0.6 mg/kg) nor prazosin (1 mg/kg) could alter the firing rates of PFC pyramidal neurons. (D): Subsequent dopamine D₁ receptor blockade did not reverse ATX-induced firing rate activation, although 2 out of 4 neurons had their firing rates reversed following SCH23390 administration. *P< 0.05, **P<0.01, ***P<0.001 vs. 0 mg/kg, Newman–Keuls test after significant repeated-measures ANOVA.
Figure 26: Effects of selective monoamine receptor antagonists on atomoxetine-induced activation of PFC neurons.

(A): Alpha-1 receptor antagonism (prazosin, 1 mg/kg) could not significantly reverse ATX-induced activation of PFC neurons. (B): However, in some neurons (3/7), prazosin strongly reduced ATX-induced firing rate activation. (C, D): The α2 receptor antagonist yohimbine further increased the activation of firing rate induced by a cumulative dose of 3 mg/kg of ATX. This activation is partially dependent on dopamine D1 receptors. In two neurons out of 4 tested this way, shown in D, firing rate activities were dramatically increased following administrations of yohimbine, unlike other neurons tested this way. *P<0.05, **P<0.01 vs. baselines, ++P<0.01 vs. values obtained immediately before administration of yohimbine, Newman–Keuls test after significant repeated measures ANOVA.

II-3-D- ADHD drugs preferentially stimulate the firing activity of spontaneously active PFC neurons

Sixty-seven percent (16/24) of all neurons with low-firing (firing rate below 4 spikes per 10 seconds) or no baseline activity (silent neurons, see Fig. 27B) became spontaneously active or had their firing activity significantly increased, following the administration of the ADHD drugs, regardless of the type of drug tested. On the other hand, almost every spontaneously active neuron (36/39, 92%) was responsive to any of the ADHD drugs tested, which is significantly different from low-firing neurons (p<0.05, Chi-square test). Indeed, all spontaneously active neurons (6/6) tested with 3 mg/kg of methylphenidate increased their firing rate activities, while 5/7 low-firing neurons (firing < 4 spikes / 10 sec) had their firing activities increased. Similar results were observed with D-amphetamine, where 15/16 spontaneously active
neurons (94%) responded by an increase of firing rate following D-amph, while 6/9 low-firing neurons (67%) increased their firing rates. When atomoxetine was tested, 15/17 spontaneously active neurons (88%) responded by an increase in firing rate, while 5/7 low-firing neurons (71%) increased their firing rates. Therefore, ADHD drugs may act preferentially, or more efficiently, on spontaneously active neurons.

II-3-E- ADHD drugs potentiate NMDA-induced firing activation

Local application of NMDA (10 nA) onto PFC pyramidal neurons induced firing rate increases by a mechanism that is partially NR2B-dependent. Indeed, when the NMDA receptor 2B antagonist Ifenprodil (Brittain et al., 2012; Korinek et al., 2011) was administered (2.5 mg/kg), local NMDA application produced significantly lower (p<0.05, Newman–Keuls test after significant one way ANOVA) firing rate increases (Fig. 27A,B). Although NMDA stimulation was strongly reduced following Ifenprodil intravenous administration, AMPA stimulations remained insensitive to cumulative doses of Ifenprodil (Fig. 27C).
Figure 27: Local NMDA application induces transient firing rate activation of pyramidal neurons by a partial NMDA receptor 2B dependent mechanism.

(A): Administration of the specific NR2B antagonist ifenprodil (2.5 mg/kg) significantly reduced NMDA-induced firing rate activation. (B, C): Typical recordings showing that NMDA-induced activations of firing rates partially decrease with cumulative administrations of ifenprodil, an effect not observed using AMPA microiontophoresis. Each top horizontal bar represents the pulsed current applied onto the neuron, therefore inducing transient neuronal activation (NMDA −10 nA, AMPA −5 nA). *P< 0.05 vs. baseline, Neuman-Keuls test after significant repeated measures ANOVA.

When applied using the same -10 nA current, NMDA and AMPA produced large increases in firing activity which typically increased baseline levels by 40-120 additional spikes per 10 s during the ejection period. Both NMDA and AMPA had a similar strong potential in inducing firing rate increases (Fig. 28A). Generally, we used lower AMPA (5 nA) than NMDA (10 nA) currents. Both NMDA and AMPA significantly increased burst activities (p<0.001, paired Student’s t-test. Fig. 28B). However, NMDA was significantly more efficient than AMPA in increasing such burst
activities ($F_{(3,190)}=6.38$, $p<0.001$, Bonferroni test after significant two-way ANOVA, Fig. 28B).

![Graphs showing neuronal activities](image)

Figure 28: ADHD drugs increase NMDA-induced activation of PFC neurons.

Local applications of NMDA (10 nA) and AMPA (10 nA) significantly increased the firing rates (A) and burst activities (B) of PFC pyramidal neurons. NMDA was more potent than AMPA in inducing burst discharges, using the same 10 nA current. (C): All three ADHD drugs, administered intravenously at 3 mg/kg, significantly increased NMDA neurotransmission in PFC pyramidal neurons. (D): D-amphetamine injections (1-3 mg/kg) did not change the ability of AMPA (5 nA) to induce transient neuronal activations. ***$P<0.001$ vs. respective 0 nA currents, $$$P<0.001$ vs. 10 nA currents, Bonferroni test after significant two-way ANOVA (A-B), *$P<0.05$, **$P<0.01$ vs. respective controls (white bars), paired Student’s t-test (C-D).

Only neurons on which NMDA applications produced consistent neuronal activations over time were selected. After at least four to seven consistent responses to NMDA, saline or ADHD drugs were administered at cumulative doses. The activation of firing induced by NMDA was significantly increased following the intravenous administration of MPH (3 mg/kg, $p<0.04$, $n=9$, paired Student’s t-test), ATX (3 mg/kg, $p<0.03$, paired Student’s t-test, $n=11$) and D-amph (3 mg/kg, $p<0.01$, paired Student’s t-test, $n=14$) but remained unchanged following the administration of the vehicle (Fig. 28C). On the other hand, the response of neurons to AMPA application...
(-5 nA) was also tested on a group of neurons treated with D-amph (n=6). No significant effect was observed, though two neurons exhibited an increase in both their NMDA and AMPA responses after D-amph administration (1-3 mg/kg) by more than 30% (Fig. 28D). Most of the neurons (14/18 in total) that were silent in basal conditions had their responses to NMDA significantly increased in response to the administration of the stimulant drugs but remained silent or with a very low baseline activity during the course of the experiment between two NMDA ejections (Fig. 29A-B). On the other hand, spontaneously active neurons generally showed an increase in both baseline and NMDA-induced firing (Fig. 29C-D). Lower doses of D-amph (0.5–1 mg/kg), closer to therapeutic ranges, did not change significantly the mean NMDA response (Fig. 30A). Although these low doses of D-amph failed to significantly change NMDA-induced firing activation in this population of 19 neurons, in 7 neurons (37%), such doses of D-amph still increased by more than 20% the mean NMDA response of these neurons (Fig. 30B, Table 2). Eleven out of fourteen neurons (79%) responded to the 3 mg/kg dose of D-amph (Table 2). In a group of 5 neurons, this effect was found to be dependent upon dopamine D₁ receptors (Fig. 30B-D), as a strong reduction of NMDA-induced firing activity was observed following SCH23390 administration in 4 neurons (p<0.05 when comparing values obtained immediately before and after administration of SCH23390, Newman–Keuls test after significant repeated measures ANOVA). On the other hand, in one other neuron tested (not included in the graph), the NMDA response was further increased following SCH23390. When neurons were pre-treated with SCH23390 (0.6 mg/kg), the administration of D-amph at 3 mg/kg did not change significantly the neuronal response to NMDA, though two neurons out of the five still had their response increased by 20% following D-amph (Fig. 31A-B). Table 2 summarises all data obtained in the present study, showing the proportion of neurons responding to the administration of the different drugs.
Figure 29: Individual neuronal responses to local NMDA application following ADHD drug intravenous administrations.
Illustrating recordings showing local NMDA neurotransmission increases following 3 mg/kg of MPH (A) and D-amph (B, C), while another neuron only mildly increased its NMDA-induced firing rate activation following 6 mg/kg of cumulative ATX doses, in conjunction with increases of baseline firing activity (D).
Figure 30: Effect of dopamine D₁ receptor blockade on NMDA-induced activation of PFC neurons induced by D-amphetamine.
Therapeutic doses of D-amph (0.5-1 mg/kg) did not change NMDA-induced firing rate activations in the population of 19 neurons recorded (A), although 7 neurons out of 19 had their NMDA-induced firing rates significantly increased by more than 20% (B). (C, D): Dopamine D₁ receptor blockade (SCH23390 0.6 mg/kg) significantly reversed the NMDA-induced firing rate activations induced by D-amph. The neurons in B and C showed an increase in their NMDA responses caused by D-amph, an effect partially reversed following dopamine D₁ receptor antagonism. The same neurons were recorded during the complete sequence. **P<0.01 vs. baseline, *P<0.05 vs. corresponding values obtained immediately before administration of SCH23390, Newman–Keuls test after significant repeated measures ANOVA.

Figure 31: Effect of dopamine D₁ receptor blockade on subsequent NMDA-induced activation of PFC neurons induced by D-amph.
(A, B): Pre-administration of a dopamine D₁ antagonist (SCH23390, 0.6 mg/kg) successfully prevented subsequent increase of NMDA neurotransmission induced by 3 mg/kg of D-amph.
Table 2: Proportion of neurons showing significant or non-significant changes in basal firing rate and in their responses to the iontophoretic application of NMDA to the different ADHD drugs and to SCH23390.

Neuronal population responses to the three ADHD drugs were evaluated on spontaneous firing activity (top) and on NMDA-induced firing activity (bottom). The dopamine D₁ antagonist SCH23390 was subsequently injected when neurons had their firing activity increased by the different drugs. n.s.: not significant, ND: not determined *P<0.05, **P<0.01, ***P<0.001 versus corresponding control (saline) conditions, Fisher’s exact test

II-3-F- Iontophoretic drug ejections induce spike amplitude variations without affecting spontaneous firing activity nor NMDA-induced responses

When drugs were locally applied onto neurons using iontophoresis, such currents induced strong action potential amplitude variations. Indeed, when saline (NaCl 130 mM) was applied by iontophoresis, positive ejection currents (+5 nA) resulted in significant spike amplitude increase (40% amplitude gain) whilst negative currents (-5 nA) induced spike amplitude decreases (22% amplitude loss, Fig. 32A). Ejection of NMDA using a 5 nA negative current also induced a 25% amplitude depolarisation, while ejection of 5 nA positive currents of D-amphetamine and
methylphenidate all induced significant action potential amplitude increases (55% and 95%, respectively). However, dopamine failed to induce any significant spike amplitude variation under such conditions. Specific examples of action potential amplitude variations under local drug delivery by iontophoresis are represented in Fig. 32B.

Figure 32: Effect of iontophoretically-applied molecules on spike amplitudes of PFC pyramidal neurons.

(A): Microiontophoresis of saline, NMDA and the 3 ADHD drugs MPH, D-amph and ATX induces electrical variations of spike amplitudes in pyramidal neurons. Here, positive currents increased spike amplitudes while negative currents decreased spike amplitudes. Please note that the ordinates are not linearly drawn. (B): Representative electrophysiological traces showing either increases or decreases in electrical spike amplitudes when molecules are iontophoretically applied. Note that NMDA induced strong amplitude variations compared to the other drugs.

Dopamine, MPH and D-amph did not change pyramidal neurons spontaneous firing activities when applied locally (Fig. 33A). When these drugs were applied locally in combination with NMDA pulses, no change was observed in the NMDA-induced firing activity of such neurons (Fig. 33B), although locally-applied dopamine had mixed effects (increase/decrease of NMDA responses in 50% of all recordings, Fig. 33B,D1,D2).
Figure 33: Effect of iontophoretically-applied dopamine, MPH and D-amph on electrical parameters of PFC pyramidal neurons.

Using currents of +5 nA, neither saline, dopamine, MPH or D-amph could alter the firing rates (A) or the burst activities (B) of pyramidal neurons. While co-application of saline and NMDA does not affect neuronal responses to NMDA (C), some neurons displayed either strong activation (3/6 neurons, D1) or reduction (3/6 neurons, D2) of their NMDA responses following co-application of both dopamine and NMDA. Both MPH (E) and D-amph (F) did not have an overall effect on the NMDA neurotransmission of PFC pyramidal neurons.
In presumed striatal medium spiny neurons (MSN), local application of NMDA, using microiontophoresis, produced reversible firing rate activation (Fig. 34). Very interestingly, when dopamine was applied at 10 nA and together with NMDA, 6 neurons responded by a decrease in NMDA-induced firing rate activation, an effect that was recovered when ejection of dopamine was stopped (Fig. 34A,C). However, 4 MSN responded by an increase of NMDA-induced firing rate activation, an effect that was also recovered with dopamine retention (Fig. 34B,D). Such effects (potentiation/dampening) differ greatly from what was observed previously in the PFC, where locally-applied dopamine had only minimal effects on NMDA responses. These results highlight the importance of the strong regulation of NMDA neurotransmission by local dopamine in striatal medium spiny neurons, where it can either dampen and/or strengthen glutamate neurotransmission, as seen before on avian MSN (Ding et al., 2002).

Figure 34: Modulation of the NMDA neurotransmission of striatal GABAergic medium spiny neurons by dopamine.

When dopamine (10 nA) was locally applied onto medium spiny neurons (MSN) simultaneously with NMDA (10 nA), two neuronal populations could be distinguished. Some neurons (6/10) displayed significant firing rate dampening (A, C) while others (4/10) displayed non-significant firing rate potentiation (B, D). When dopamine iontophoresis was no longer applied, NMDA-induced firing rates were recovered immediately. *P<0.05 vs. NMDA 10 nA, Newman–Keuls test after significant ANOVA.
Methylphenidate was acutely administered at a dose of 1 mg/kg and produced a significant increase (p<0.027, paired Student’s t-test) of the NMDA-induced firing rate activation of medium spiny neurons (Fig. 35). A cumulative dose of 2 mg/kg of MPH further increased such effects, suggesting that glutamatergic neurotransmission of MSN neurons is altered following MPH exposure. Compared to what was found in the PFC, methylphenidate produced significant effects at lower doses, close to therapeutic doses, in the striatum.

Figure 35: Modulation of the NMDA neurotransmission of striatal GABAergic medium spiny neurons by methylphenidate. (A): Intravenous administration of 1-2 mg/kg of MPH significantly increased the firing rate activations observed during NMDA applications. (B): Example of one neuronal recording showing potentiation of NMDA neurotransmission by intravenous MPH (1 mg/kg). Here, local dopamine application following MPH exposure led to a strong reduction of the firing rate induced by NMDA applications. (C): Example of one out of five striatal medium spiny neurons where local applications of MPH (5 and 10 nA) dose-dependently potentiate NMDA responses. **P<0.01, ***P<0.001 vs. baseline, Newman–Keuls test after significant repeated measures ANOVA.
II-3-H- Acute psychostimulant administration enhances locomotor activity and NMDAR$_{2B}$ protein expression in the striatum

Behavioural traits such as rearing, grooming and scratching were assessed in single-housed rats during 60 minutes after a single D-amphetamine or methylphenidate administration. We observed that D-amphetamine, administered intraperitoneally at a single dose of 3 mg/kg, significantly decreased the grooming behaviour after the first 15 minutes and until the end of the observation period (Fig. 36A1,A2). D-amph did not change the scratching behaviour (Fig. 36B1,B2), but had an immediate effect in increasing the rearing activity (Fig. 36C1,C2). The D-amph-induced increased rearing activity remained 300% higher than the control condition throughout the observation period. In contrast, methylphenidate did not induce any significant changes in scratching or grooming activities when administered at 5 mg/kg (Fig. 36A3,B3). However, 5 mg/kg of MPH significantly increased rearing activity after 45 minutes (Fig. 36C3), but this effect was milder than the one induced by D-amph. We show here that acute psychostimulant exposure increased vertical locomotor activity, which could be one amongst many consequences of increased cortical excitability, as seen in previous paragraphs. Please note that these results were obtained from 4 animals in each group and that such a small sampling size could be considered too small.
In this experiment, 3 different behavioural traits such as grooming (A1), scratching (B1) and rearing (C1) were analysed during the first 60 minutes following intraperitoneal drug exposure. (A2, A3): Exposure to D-amph (3 mg/kg), but not MPH (5 mg/kg), significantly decreased the cumulative number of grooming events during the entire observation period. Scratching events were not altered following either drug exposure (B2, B3). D-amph strongly increased the number of rearing events throughout the recording period (C2), an effect only seen during the last 15 minutes of the observation period (46-60 minute window) when MPH was used (C3). *P<0.05, **P<0.01 vs. vehicle, unpaired Student’s t-test. $P<0.05, $$P<0.01$ vs. vehicle, Bonferroni test after significant repeated measures two-way ANOVA.

We then examined the impact of such injections on the NMDA receptor 2B protein expression (NR$_{2B}$) using western blotting techniques in order to determine if a correlation between our electrophysiological results and NR$_{2B}$ protein could exist. Once set up, the blotting techniques were qualitatively reliable and routinely used. As a matter of fact, consistent results were always observed. We observed a significant increase of the NR$_{2B}$ protein expression in the PFC after D-amph administration (Fig. 37), but not following MPH administration. Interestingly, in the striatum, both
treatments led to significant increases of NR$_{2B}$ expression. No change in this protein expression has been found in the hippocampus after any of the two treatments (Fig. 37).

Figure 37: Psychostimulant exposure increases cortical and striatal NMDA receptor 2B protein expression.

Following behavioural experiments, NR$_{2B}$ protein expression levels were quantified in different regions. In the prefrontal cortex, only D-amphetamine exposure (3 mg/kg) increased NR$_{2B}$ protein expression. However, both psychostimulants (D-amph 3 mg/kg and MPH 5 mg/kg) increased NR$_{2B}$ protein expression in the striatum, but not in the hippocampus. Bottom are displayed representative immunoblots with protein sizes in kilodaltons (kD). *P<0.05, **P<0.01, ***P<0.001 vs. respective vehicle, Newman–Keuls test after significant ANOVA.

These results indicate a partial relationship between increased cortical/striatal excitability, locomotor activity and NR$_{2B}$ expression.

II-4- Discussion

The present chapter demonstrates that the ADHD drugs MPH, D-amph and ATX modulate the firing activity and glutamate excitability of PFC pyramidal neurons. Table 3 summarised the proposed interactions within this study.
Table 3: Summary of known and proposed interactions between the molecules under study.

<table>
<thead>
<tr>
<th>Known interactions</th>
<th>Hypothesised interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATX</td>
<td>ATX</td>
</tr>
<tr>
<td>DAT</td>
<td>DAT</td>
</tr>
<tr>
<td>VMAT2</td>
<td>VMAT2</td>
</tr>
<tr>
<td>α1-R</td>
<td>α1-R</td>
</tr>
<tr>
<td>D1-R</td>
<td>D1-R</td>
</tr>
</tbody>
</table>

Diagram:

- **ATX**: atomoxetine
- **DAT**: dopamine transporter
- **VMAT2**: vesicular monoamine transporter 2
- **α1-R**: adrenergic α1 receptors
- **D1-R**: dopamine D1 receptor
- **NET**: norepinephrine transporter
- **SERT**: serotonin transporter
- **5-HT**: serotonin
- **DA**: dopamine
- **NE**: norepinephrine
- **5-HT**: serotonin
- **glut**: glutamate
- **glyc**: glycine
- **Ca^2+**: calcium ion

Legend:
- **strong inhibition**
- **Strong activation/interaction**
- **weak inhibition**
- **transport**
As already demonstrated in our laboratory (Gronier, 2011), we confirmed that MPH excitatory effects on PFC neurons are largely dependent on dopamine D₁ receptors (Fig. 22). Indeed, MPH administration led to increases in the firing activities of spontaneously active neurons as well as silent neurons. MPH was able to elicit large firing activations, as observed before (Claussen et al., 2014b), some of which were reversed by subsequent dopamine D₁ receptor antagonism, in line with a previous study showing that MPH enhances cortical excitability through D₁ receptors (Gronier, 2011). However, a few other studies found the MPH-induced effects to be dependent upon alpha-2 receptors (Andrews et al., 2006; Berridge, 2006). Interestingly, according to Andrews’ study, the alpha-2 dependency of MPH to induce such activation of cortical pyramidal neurons might be mediated by stimulation of alpha-2 receptors on interneurons rather than direct pyramidal cell activation (Andrews et al., 2006). Indeed, alpha-2 receptors are majorly Gᵢ protein coupled but some receptor subtypes can also interact with Gₛ or Gₛ₁₁ proteins (Aantaa et al., 1995). When activated, they produce hyperpolarisation (Andrade et al., 1985; Egan et al., 1983) by increasing potassium conductance (Williams et al., 1985). Therefore, it was stipulated that MPH is likely to induce disinhibition of pyramidal neurons via hyperpolarisation of cortical interneurons (Andrews et al., 2006). Nonetheless, the present study is the first to demonstrate that D-amph also stimulated PFC firing activity in a dose-dependent manner which is also partially dependent on the stimulation of dopamine D₁ receptors (Fig. 23D,E). This is compatible with the fact that both D-amph and MPH, by interacting with synaptic catecholamine transporters and increasing dopamine efflux (Arnold et al., 2001), act as indirect dopamine D₁ agonists and that D₁ receptor activation can generate increases in neuronal excitability (Gronier et al., 2013; Tseng et al., 2007; Wang et al., 2011). As a matter of fact, a recent study from our laboratory found that the systemic administration of D₁ selective agonists, and to a lesser extent their local application, can stimulate the firing activity of PFC neurons in vivo (Gronier et al., 2013).

The magnitude of the increase in firing activity elicited by both psychostimulants, MPH and D-amph, does not seem directly proportional to the amount of dopamine release that these drugs can induce. According to microdialysis studies, D-amph is far more potent than MPH in inducing dopamine release (Kuczenski et al., 1997) but does not produce a more dramatic increase in firing activity (Fig 22-23). Indeed, we have found that D-amph and MPH produce similar firing activity
activations. This result indicates that D₁-dependent activation of pyramidal neurons, produced by increases in extracellular dopamine levels, is likely to be at its maximum level, when the two drugs are already administered at intermediate doses (3-6 mg/kg).

However, the present study also shows that these large activations occur at doses that slightly exceed therapeutic levels. Lower doses of MPH and D-amph closer to the therapeutic range (0.5–1 mg/kg for both drugs) produced milder electrical activation (Table 2) only in a subset of PFC neurons (Gronier, 2011; Gronier et al., 2010). Although it is difficult to compare doses in humans and rodents, which have a much more powerful metabolism capacity (Demetrius, 2005; Martignoni et al., 2006; Mraz et al., 1989), it can be expected that, in humans, therapeutic doses of D-amph and MPH are likely to produce a moderate dopamine D₁-dependent excitability increase in a subset of pyramidal PFC neurons. Larger activation of PFC neurons occurring at higher doses is likely to be associated with the well-known motor and cognitive impairments induced by these drugs (Swanson et al., 2003). Indeed, psychostimulants can induce a sensation of being “high”. As an example, such sensations appear almost immediately (1-3 minutes) when acute intravenous exposure to 0.37-0.5 mg/kg of methylphenidate or cocaine occurs (Morton et al., 2000; Volkow et al., 1999b; Volkow et al., 1996b). These doses induce a dopamine transporter occupancy ranging from 80-93%, but only occupancies above 80% are considered to be necessary to induce a feeling of a “high”, although some patients with DAT occupancies higher than 80% do not experience the “high” but display clear behavioural effects (Volkow et al., 1996a) such as a need to move and anxiety as well as cardiovascular side effects (on heart rate, diastolic and systolic blood pressures). Very interestingly, in patients, cocaine and methylphenidate result in similar patterns for dopamine transporter occupancy. Both drugs display similar pharmacokinetic properties, except for their clearance profiles (Volkow et al., 1995). The dopamine D₁ receptor is known to exert a biphasic effect on PFC functions, with moderate activation producing cognition improvement and sharpening synaptic transmission, while excessive stimulation impairs cognitive function and neuronal network activity (Goldman-Rakic et al., 2000; Seamans et al., 2004). However, dopamine D₁ receptor stimulation is probably not the only catecholamine receptor involved in psychostimulant-induced activation of PFC neurons. As a matter of fact, only 60-65% of the neurons activated by MPH or D-amph had their activation significantly reversed by D₁ receptor antagonist and, in some of these D₁-sensitive
neurons, the effect of the antagonist was only partial. Therefore, the contribution of other catecholamine receptors is also probable. It should be noted that we found in a previous study that adrenergic β1 and dopamine D₂ receptors could contribute to MPH-induced activation of PFC neurons in a subset of neurons. Nevertheless, in the present study, D₁ receptor blockade alone or combined with alpha-1 receptor blockade were the only two pharmacological manipulations that could significantly prevent the excitatory effects of psychostimulants (Fig. 24).

On the other hand, ATX-induced neuronal activation of PFC neurons did not seem to be primarily dependent on D₁ receptors (Fig. 25C). Whether this can be associated with the lack of immediate effect of ATX, over psychostimulants, in ADHD patients is an interesting question to address. However, ATX is known to promote, with similar potency as MPH, large amounts of dopamine release in the PFC under in vivo conditions (Bymaster et al., 2002), most likely via its action on the NET, which plays a key role in the clearance of dopamine in the PFC (Devoto et al., 2006). The ATX-induced effect may result from a more complex combination of the activation of different catecholamine receptors. The contribution of the α1 adrenoceptor has been demonstrated in our study in a fraction of the neurons tested (Fig. 26A-B). While one study acknowledges the role of alpha-1 receptor in ATX-induced cortical acetylcholine release (Tzavara et al., 2006), others failed to find any contribution of alpha-1 receptors in ATX-induced risk taking (Yang et al., 2016), which is a PFC-controlled behavioural trait. Although acting as an indirect alpha-1 receptor agonist, ATX has also been shown to bind to alpha-1 receptors with low affinity (Bymaster et al., 2002). Furthermore, subsequent blockade of α2 receptors by yohimbine (Fig. 26C-D) was found to potentiate the effect of ATX on firing activity, at least in a subset of neurons in our experiments. These results are in agreement with a previous investigation in monkeys, where ATX and MPH indirectly improved working memory via alpha-2 and dopamine D₁ receptor dependent mechanisms (Gamo et al., 2010). ATX, by potently blocking the NET, may initially indirectly activate inhibitory α2 receptors on the pyramidal cell and therefore attenuate possible excitatory effects mediated by other catecholamine receptors, including the D₁ receptors, as demonstrated in some neurons tested in the present study (Fig. 26C). Therefore, in this way, ATX may not be able to promote the same dopamine D₁ receptor-dependent excessive activation of PFC neurons which may be associated with the well-described behavioural disturbances elicited by psychostimulants when
administered at high doses (Spiller et al., 2013). However, in our study, we found similar potencies for D-amph and ATX to induce neuronal excitations (Fig. 23 and 25, respectively).

Nevertheless, the fact that a significant proportion of neurons are activated by therapeutic doses of ADHD drugs (compared to saline-treated neurons) may help to improve ADHD symptoms. Moderate enhancement of PFC neuronal excitability may compensate for the well-documented cortical hypofunction observed in ADHD, as evidenced by reduced cortical thickness and metabolic activity in some subregions of the PFC in drug-free patients (Fernandez-Jaen et al., 2014; McLaughlin et al., 2014).

In parallel with some of our latest observations using D₁ receptor agonists (Gronier et al., 2013), we found that ADHD drugs preferentially increased the basal activity of spontaneously active PFC pyramidal neurons over silent neurons. This is compatible with the fact that dopamine D₁ receptor may not directly stimulate the activity of PFC pyramidal neurons but may rather strengthen pre-existing tonic excitatory regulations of the firing activity of PFC neurons. Such tonic excitatory input is likely to be mainly maintained by glutamatergic neurotransmission, as the spontaneous activity of PFC neurons has been shown to be mediated by mutual excitation between glutamatergic pyramidal neurons (Kritzer et al., 1995). Moreover, we found that ADHD drugs powerfully stimulate the excitability of PFC neurons mediated by glutamate receptor activation (Fig. 27C).

Indeed, the present study, for the first time, demonstrates that ADHD drugs promote an in vivo potentiation of the excitatory response of PFC neurons to the glutamate agonist NMDA, an effect not associated with changes in basal firing activity (Fig. 29-30). Ionotrophic glutamate receptors in the PFC are essential for attention processes, impulse control and for efficient memory function (Nakanishi, 1992). In the PFC, local NMDA application by microiontophoresis produces transient neuronal activation (El Iskandrani et al., 2015; Gobbi et al., 2006), which is strongly decreased when glycine B site antagonists such as HA-966 and MRZ 2/576 are co-applied (Chen et al., 2003a; Christoph et al., 2006). In rodents and humans, NR₂B and NR₂A subunits predominate in prefrontal regions (Cull-Candy et al., 2001; Dingledine et al., 1999; Zhuo, 2009) and always form heterogeneous complexes with NR₁ receptors. NR₂B
subunits are major actors for synaptic potentiation, which is crucial for learning and plasticity (Zhuo, 2009). Moreover, administration of the specific NR_{2B} antagonist ifenprodil, before a learning paradigm, is known to impair normal learning, indicating that NMDAR_{2B} are required for synaptic potentiation (Zhuo, 2009). Our study also demonstrated the role of NMDA receptor 2B in the responses to local NMDA application, as ifenprodil (2.5 mg/kg) strongly reduced NMDA-induced firing rate activation (Fig. 28). Antagonism of NMDA receptor has been shown to prevent some of the acute and chronic neurochemical and behavioural effects of psychostimulants (Bristow et al., 1994; Gaytan et al., 2000; Hemrick-Luecke et al., 1992; Yang et al., 2000), indicating that NMDA receptors may play a crucial role in stimulant-induced effects. Moreover, recent behavioural evidence shows that administration of NMDA antagonists directly in the PFC induced a profound deficit in attention and increased impulsivity in rodents (Carli et al., 2014).

Imaging studies have shown that children with ADHD exhibit hypoactivity in prefrontal region, as well as anatomical and functional dysfunction in fronto-striatal circuits, associated with white matter loss (Cubillo et al., 2012; Liston et al., 2011). Patients suffering from ADHD exhibit regional abnormalities such as decreased cortical thickness in regions located beneath the cortex such as the right caudate, the insula and thalamus (Ivanov et al., 2010; Lopez-Larson et al., 2012; Rubia et al., 2014; Valera et al., 2007). These abnormalities can also be related to brain function. Indeed, hypo-activation during sustained attention tasks has been observed in ADHD patients (Cubillo et al., 2012). Finally prefrontal and striatal connectivity impairments are also found in ADHD subjects (Liston et al., 2011; Tomasi et al., 2012). The elevated NMDA receptor function induced by ADHD drugs (Fig. 27C) may lead to an increase in the excitability of PFC neurons that could be essential in regulating glutamatergic cortico-striatal transmission and strengthening synaptic transmission at these synapses. This NMDA receptor activation may trigger cortical as well as striatal synaptic plasticity and could therefore exert beneficial effects on various aspects of cognitive and executive functions, both impaired in ADHD. As a matter of fact, glutamate neurotransmission in ventral and dorsal striatum, originating mainly from glutamate fronto-striatal projections, plays a major role in controlling cognitive flexibility, required for normal attention and cognition (Ding et al., 2014). Moreover, NMDA receptor activation is known to induce synaptic plasticity, assessed by membrane receptor insertion and
long/short-term potentiation/depression (Lu et al., 2001; Malenka et al., 1993). ADHD drugs, by enhancing NMDA tone on PFC pyramidal neurons, may therefore restore adequate neurotransmission and plasticity in ADHD patients, as observed in animal models (Gandal et al., 2012; Sasaki et al., 2015). Moreover, we found that methylphenidate increased NMDA-induced responses of striatal medium spiny neurons (Fig. 35), an effect that may strengthen functional cortico-striatal connectivity.

The question arises as to whether pharmacological manipulation that can enhance NMDA receptor function can be of therapeutic benefit for ADHD patients. For instance, one can wonder if cognition enhancers such as direct or indirect glycine B agonists of the NMDA receptor (e.g., Glycine transporter uptake inhibitors, GlyT₁) could be of any clinical use (Cheng et al., 2014). Such agents have been shown to improve cognitive flexibility and working memory (Bado et al., 2011; Kuriyama et al., 2011; Nikiforuk et al., 2011), as well as attention deficits caused by NMDA receptor blockade (Chang et al., 2014). Recently, glycine uptake inhibitors were proven to potentiate NMDA-dependent long-term potentiation in hippocampal CA1 pyramidal neurons (Alberati et al., 2012) and could restore MK801-induced LTP impairment (Manahan-Vaughan et al., 2008). Finally, GlyT₁ antagonists increase in vitro and in vivo post-synaptic NMDA currents in neurons (Bergeron et al., 1998; Chen et al., 2003a; Martina et al., 2004). However, such agents may be able to positively modulate NMDA channels only under precise conditions (Sur et al., 2007), such as under AMPA-dependent release of the magnesium block. Despite the fact that these drugs have not yet been proven to have a clearly beneficial therapeutical effect on negative deficits in schizophrenia (Chue, 2013; Schoemaker et al., 2014), one cannot rule out that they can help to alleviate some of the symptoms of ADHD. Moreover, aberrant glutamate neurotransmission has been found in ADHD patients (Lesch et al., 2013). This recent study reinforces previous studies where ADHD was positively associated with polymorphisms in different glutamate receptor subtypes such as GluR7, NR2A and NR2B (Akutagava-Martins et al., 2014; Dorval et al., 2007; Elia et al., 2012; Park et al., 2013; Park et al., 2014; Turic et al., 2004), although one study did not find any relationship between ADHD and NR2A (Adams et al., 2004). Nevertheless, an increase in NMDA receptor function may only be one component of the complex mechanisms that can lead to therapeutic responses and it is now necessary to establish whether this effect can persist after the chronic administration of ADHD drugs. Our data confirms, in part, a
recent in vitro electrophysiological study showing that an acute low dose administration of MPH can increase NMDA-dependent excitatory post-synaptic potentials in PFC slices (Cheng et al., 2014). However, the authors did not demonstrate any contribution of the D₁ receptor in this modulation but suggested rather the involvement of alpha-1/2 adrenoceptors.

Interestingly, we found that, for D-amph, this increase in NMDA neurotransmission may occur, at least partially, via an interaction with dopamine D₁ receptors as we found in a significant number of neurons tested (but not all) that the selective D₁ antagonist SCH23390 reversed or prevented the potentiation of NMDA response elicited by D-amph. Dopamine is known to facilitate glutamatergic transmission onto PFC neurons via interactions with both AMPA and NMDA receptors. Intracellular electrophysiological studies have shown that NMDA receptor currents are potentiated by dopamine D₁ receptor activation (Sarantis et al., 2009), while D₁ receptor stimulation may promote AMPA receptor trafficking in the PFC (Sun et al., 2005). Postsynaptic dopamine D₁ and some NMDA receptors colocalise in the PFC and have been shown to interact synergically (Goldman-Rakic et al., 2000; Kruse et al., 2009; Wang et al., 2001). It is generally believed that dopamine promotes NMDA receptor trafficking through phosphorylation induced by a D₁ receptor-like signalling cascade (Hu et al., 2010; Trepanier et al., 2012; Urban et al., 2013b; Yang et al., 2005). Nevertheless, the role of dopamine on NMDA receptor function can be very complex in the PFC, with differential modulation depending on receptor subtypes (Urban et al., 2013b). In addition, not all neurons tested were responsive to the dopamine D₁ receptor antagonist after potentiation of their NMDA response by D-amph or MPH. While dopamine has a small dual effect on the NMDA-induced firing activation of PFC neurons (strengthening or dampening NMDA neurotransmission, in 50% of all neurons, Fig. 33), it strongly affects NMDA neurotransmission in striatal medium spiny neurons (also strengthening or dampening). Therefore, other mechanisms may also explain the increase in glutamate/NMDA excitability generated by ADHD drugs (Zhang et al., 2012a).

We have also found that acute psychostimulant administrations induce changes in local NMDA receptor 2B protein expression. The NMDA receptor 2B is responsible for neuronal excitations, which are increased following acute ADHD drug
NR2B functions range greatly, from learning to pain and memory processing as well as feeding habits (Loftis et al., 2003). Both MPH and D-amph induced strong NR2B protein expression elevation in the striatum, while only D-amphetamine significantly increases NR2B protein expression in the prefrontal cortex (Fig. 37). Such increases in NR2B receptor expression can arise from either newly-synthesised receptors or from membrane insertion of internally-stored receptors. One can assume that ADHD drugs may increase NR2B protein expression in specific brain regions, which, in turn, promotes neuronal excitation. These results are also in line with previous findings where the amount of NR2B protein level at the membrane surface increased following a single intraperitoneal 0.5 mg/kg MPH exposure, inducing increases in NMDA receptor-mediated excitatory post-synaptic current (Cheng et al., 2014). The NR2B subunit of the NMDA receptor complex is responsible for long-term potentiation (Yoshimura et al., 2003), which is crucial for the development of plasticity as well as memory and learning (Loftis et al., 2003). And yet, a 1 mg/kg dose of MPH produced opposite effects on NR2B expression after 60 minutes (Urban et al., 2013b). NR1 protein, however, was found to be decreased in the frontal cortex following acute methamphetamine administration, while both NR2A and GluR2 proteins were increased (Simoes et al., 2008). Moreover, in vitro cocaine exposure (1 µM) induced increased total NR2B expression in the midbrain following 10 minutes of cocaine exposure (Schilstrom et al., 2006). Because such an increase of NR2B expression was abolished when slices were pre-treated with a protein inhibitor (anisomycin 20 µM), such a result can only be attributed to newly synthesised NR2B receptors (Schilstrom et al., 2006). Similar results were observed following bath application of a dopamine D1 receptor agonist (Hu et al., 2010) in the prefrontal cortex (SKF-81297, 10 µM). Chronic exposure to amphetamine (4 mg/kg) led to significant decreases of NR2B levels in the striatum, consistently with our study on chronic MPH exposure (see Chapter IV), while NR1, NR2A, NR3A, NR3B levels were not changed following chronic amphetamine exposure (Mao et al., 2009). However, in the prefrontal cortex, NR2B protein expression was not altered by such treatment in Mao’s study, contrary to what we have found. In the striatum, in vivo interactions between the dopamine D2 receptor and the NMDA2B receptor have been observed (Liu et al., 2006). Moreover, such functional interactions are responsible for the behavioural responses to cocaine. Therefore, NR2B protein may be linked to exposures with stimulants (Brunk et al., 2010; Gutierrez-Arenas et al., 2014; Pascoli et al., 2011) or alcohol (Kash et al., 2008; Nagy, 2004; Wang et al.,
2007a; Wang et al., 2010a). In our experiments, NR2B protein expression levels increased following acute stimulant exposure in some brain regions, which may reflect immediate synapse reorganisation and plasticity. The time allocated to our blotting project having run out, we were unable to elaborate our results, although we were considering studying phosphorylated NR2B receptors as well as distinguishing different cellular fractions, such as membrane-bound receptors or internally-stored receptors.

Our results, showing that ATX also enhances NMDA-mediated response on PFC neurons, stand in contrast with a recent in vitro electrophysiological study, demonstrating that ATX, at a relatively low concentration (5 μM), inhibits NMDA-induced current when studied on PFC slices, via an open-channel blocking mechanism (Ludolph et al., 2010). Similar results were observed with D-amph which could act as a low affinity inhibitor of the NMDA receptor complex (Yeh et al., 2002). However, ATX, like D-amph, enhances dopamine efflux in PFC according to microdialysis studies. Even if D1 receptor stimulation helps to moderately enhance the basal activity of PFC neurons in ATX-treated animals, ATX may generate enough D1 receptor activation to interact with NMDA receptors and compensate for the weak inhibitory effects of this drug on NMDA receptors.

Our data also differs from two other electrophysiological investigations carried out in non-anaesthetised rats, using different recording techniques, showing that D-amph (2 mg/kg) and MPH (0.25–15 mg/kg) do not elicit firing activation of PFC neurons but rather, in the case of D-amph, tend to have suppressant effects (Devilbiss et al., 2008; Wood et al., 2012). Such divergence might be associated with differences in the recording techniques, in particular regarding the use of probes with different sensitivity levels for the recording of electrical signals. Nevertheless, the study by Devilbiss in 2008 shows that a low dose of MPH (0.5 mg/kg) increased the evoked excitatory responses of PFC neurons following hippocampus stimulation. Such a stimulatory effect, which is likely to involve glutamate-dependent processes, is not in contradiction with our study.

We have also reported that local drug delivery, through iontophoresis, induces strong spike amplitude variations (Fig. 32). While positive currents tend to induce spike amplitude gain, negative currents tend to induce loss of amplitude. These results are in
agreement with numerous electrophysiological investigations in humans (Cepeda et al., 1991), rodents (Kiyatkin et al., 1998; Stratton et al., 2012) and other species (Rose et al., 2013; Russo et al., 1992). Recent in vitro studies on subthalamic nucleus neurons by Shen have shown that NMDA application (10 μM) is responsible for the activation of ATP-sensitive outwards potassium currents (Shen et al., 2010; Shen et al., 2013). In another 2014 study, Shen also observed that such mechanisms are regulated by the adenosine monophosphate (AMP) kinase (Shen et al., 2014). These studies may explain the membrane hyperpolarisation that we observed in our results after termination of local NMDA application (Fig. 32) and for the post-NMDA firing rate reduction observed in spontaneously active neurons, as seen in Fig. 30D. Because none of the drugs applied iontophoretically induced a significant spike amplitude variation compared to saline iontophoresis, we can assume that such spike amplitude variations are not likely to change spontaneous spike generation (Fig. 33A) or NMDA-induced firing (Fig. 33B) and are rather the consequences of local current delivery in close vicinity to the neuronal membrane. Very interestingly, such electric artefacts have been observed before (Belle et al., 2013; Herr et al., 2010; Wang et al., 1977).

Our results also show that acute MPH (at therapeutical doses) significantly increases NMDA neurotransmission in medium spiny neurons located in the striatum (Fig. 35). Interestingly, another study has shown that chronic MPH administration (daily 15 mg/kg for 2 weeks) leads to increased dendritic spine densities of such neurons (Kim et al., 2009). Moreover, ionotropic glutamate receptors (NMDA and AMPA receptors) are strongly expressed in dendritic spines of excitatory neurons (Alvarez et al., 2007; Bellot et al., 2014; Hasbani et al., 2001) and play key roles in synaptic plasticity (Fischer et al., 2000). Taken together, these results may link MPH exposure to increased glutamatergic neurotransmission of striatal MSN as well as improved cortico-striatal functional connectivity.

Finally, we have positively correlated acute MPH and D-amph administrations with increases in the total amount of rearing activities (Fig. 36C), a consequence of increased vertical exploration behaviour (al-Khatib et al., 1995; Alves et al., 2005; Brown et al., 2008; El Yacoubi et al., 2000). Although the rearing activity is not similar to the locomotor activity, some consider rearing events to be the vertical components of the locomotor activity (al-Khatib et al., 1995; El Yacoubi et al., 2000). None of the two
drugs changed the animals’ scratching parameters while only D-amphetamine significantly reduced the total number of grooming events, 45 minutes after the injection (Fig. 36A). In previous studies, 1-3 mg/kg doses of D-amph (Aguilar-Rivera et al., 2015; Backstrom et al., 2011; Kubera et al., 2002; Leza et al., 1991; McNamara et al., 2006) or 2.5-20 mg/kg of MPH (Amini et al., 2004; Cheng et al., 2014; Claussen et al., 2014b; Marsteller et al., 2002; Penner et al., 2001) all significantly increased locomotor activity in rodents, in consistence with our study, where rearing activities were significantly increased following stimulant exposure. In addition, these locomotor activities solely depend upon blockade of the DAT, as DAT knockout mice do not display any hyper-locomotion following 1 mg/kg of D-amph (Spielewoy et al., 2001).

In children, only a few studies have reported that MPH, given to children, can induce abnormal movements such as motor tics or dyskinesia (Balazs et al., 2011; Lipkin et al., 1994; Wulbert et al., 1977). Acute administrations did not alter stereotypical events in our animals (not shown), as observed in another study (Claussen et al., 2014b). However, several studies have found opposite results, where MPH induced strong stereotypical events following high doses (15-50 mg/kg) of methylphenidate (Bell et al., 1982; Davis et al., 1978; Mueller, 1993).

In conclusion, our electrophysiological studies indicate that all three ADHD drugs equally stimulate the excitability of PFC pyramidal neurons, in basal and NMDA-evoked conditions, when administered acutely. While the electrophysiological effects elicited by psychostimulants may be primarily dependent on dopamine D1 receptor activation, those induced by ATX may also rely on other mechanisms. When applied locally on prefrontal cortex pyramidal neurons, methylphenidate, D-amphetamine and dopamine induce spike amplitude variations, but without affecting spontaneous and NMDA-induced firing activities. However, in the striatum, locally-applied dopamine produced more striking effects, showing two very distinct neuronal populations. In these striatal medium spiny neurons, low doses of MPH (1 mg/kg) produced significant effects on NMDA-induced firing rate activations. Striatal NR2B protein expression increased following acute exposure to MPH (5 mg/kg) and D-amph (3 mg/kg), while prefrontal cortex NR2B protein expression only increased following D-amph exposure. Finally, acute psychostimulant injections increased vertical locomotor activity in our rodent model.
Chapter III – Excitatory glutamate components involved in the electrophysiological response of ventral tegmental area dopamine neurons to acute methylphenidate.

III-1- Introduction

The ventral tegmental area (VTA) plays a central role in the response to psychostimulants (Kalivas et al., 1993). Indeed, VTA neuronal excitability has been found to be modulated by psychostimulants such as cocaine (Lee et al., 1999; Nimitvilai et al., 2012; Steffensen et al., 2008; Zhou et al., 2006), D-amphetamine (Shi et al., 2000b; Xu et al., 2001), methamphetamine (Shi et al., 2004), methylphenidate (Jones et al., 2013), nicotine (Eddine et al., 2015; Erhardt et al., 2002; Zhang et al., 2012b) as well as cannabinoids (French et al., 1997). Addiction may first settle within the VTA (Adinoff, 2004; Koob et al., 2010; Taylor et al., 2013), whether drug-related or not, such as addiction to food, video games, pornography and gambling (Baik, 2013; Gearhardt et al., 2011; Han et al., 2011; Hilton et al., 2011; Love et al., 2015; Potenza et al., 2002; Shriner et al., 2014; Zhang et al., 2015).

Midbrain dopamine neurons strongly modify their firing and burst activities following psychostimulant administration, but not necessarily by firing rate activation (Bunney et al., 1973; Einhorn et al., 1988; Shi et al., 2004). In vivo administration of 0.25 mg/kg of D-amphetamine produced midbrain dopamine neuron silencing in 20% of all recordings (Bunney et al., 1973). In addition, this study also calculated an average IC$_{50}$ of 1.6 mg/kg. However, this effect was specific to D-amph, as it was not observed following L-amph exposure, even with doses up to 25 mg/kg. When cocaine was administered intravenously (0.5 mg/kg), VTA GABAergic neurons increased their firing rates by 160%, an effect not observed with lidocaine (Steffensen et al., 2008). Cocaine administration (0.06-16 mg/kg, i.v.) results in dose-dependent inhibition of
VTA dopamine neurons (Hinerth et al., 2000). However, another study observed a proportion of VTA dopamine neurons (50% of all neurons recorded) that responded by an increase in the firing rate following cocaine administration (0.25 mg/kg) (Mejias-Aponte et al., 2015). The study by Jones in 2014 on freely behaving animals observed dose-dependent responses of such neurons to 0.6, 2.5 and 10 mg/kg of acute intravenous methylphenidate, with increases in firing rates in 30%, 66% and 57% of all recordings, respectively (Jones et al., 2014). Other addictive substances, such as the two opioids morphine and heroin, can induce modifications of firing rates of midbrain dopamine neurons. Indeed, intra-VTA morphine infusions (60 nl of a 1 mg/ml morphine solution), increased baseline firing rates by 47%, while intravenous morphine administrations (1 mg/kg) increased baseline firing rates by 25% (Jalabert et al., 2011). Finally, heroin (1 µM), applied in baths onto midbrain slices, produced strong firing rate increases (4-fold) of dopamine neurons (de Guglielmo et al., 2015).

Because local dopamine transporter blockade will result in dopamine concentration increases within the synaptic cleft, psychostimulants will also trigger neuronal reorganisation (plasticity) as well as behavioural responses (Hughes, 1972; Russo et al., 2010; Sproson et al., 2001; Zehle et al., 2007). These modifications are now believed to be glutamate-related (Cheng et al., 2014; Guillem et al., 2015; Schmitz et al., 2015; Warton et al., 2009), because MPH treatment seems to normalise some of the glutamatergic abnormalities observed in ADHD patients (Hammerness et al., 2012). Several studies, using proton magnetic resonance spectroscopy, observed that drug-free ADHD patients present abnormal measurements of glutamate metabolites in the prefrontal cortex, the cerebellum, the basal ganglia and the striatum (Carrey et al., 2007; Courvoisie et al., 2004; Ferreira et al., 2009; MacMaster et al., 2003; Maltezos et al., 2014; Perlov et al., 2010). In his 2012 study, Hammerness observed higher glutamate/myo-inositol ratio with ADHD patients under MPH treatment, while both untreated and control patients display lower ratios. In ADHD children, low levels of GABA and high levels of glutamate were detected (Purkayastha et al., 2015; Schuch et al., 2015).

The relationship between glutamate and dopamine is central to the regulation of the excitability of prefrontal cortex pyramidal neurons (Tseng et al., 2004). Dopamine is known to protect neurons against glutamate excitotoxicity (Vaarmann et al., 2013).
Moreover, dopamine also prevents calcium dysregulations in midbrain dopamine neurons (Vaarmann et al., 2013), which can be triggered by over activation of ionotropic glutamate receptors. In an animal study on SHR rats, it has been suggested that the glutamate neurotransmission terminating onto dopamine-rich areas, such as the striatum, is hyperfunctional (Miller et al., 2014). Indeed, Miller’s study has shown significantly increased evoked glutamate release within the striatum from SHR (ADHD) rats compared to Wistar Kyoto (control) rats.

In this third chapter, we will study the consequences of acute methylphenidate administration on the electrical activities of ventral tegmental area neurons and the implication of glutamate in such activities. Besides, using iontophoresis, we will also determine the role of glutamate neurotransmission, as well as the influence of local catecholamines, in the regulation of the electrical activities of midbrain dopamine neurons.

III-2- Material and Methods

III-2-A- Subjects

Please refer to paragraph II-2-A. Within this chapter, 85 animals were used, from which 188 neurons were recorded.

III-2-B- In vivo extracellular single unit electrophysiology

Please refer to paragraph II-2-B. Putative midbrain dopamine neurons were identified according to electrophysiological criteria summarised by Ungless and Grace in 2012 (Ungless et al., 2012). Only presumed dopaminergic neurons presenting a notch in the rising phase, a prominent negative compound and a time greater than 1 ms from the start of the depolarisation to the end of the repolarisation were selected in our study (Chenu et al., 2013; Grace et al., 1984; Grace et al., 1983; Ungless et al., 2004; Valenti et al., 2011). A burst activity in such neurons is defined as two spikes occurring at an interval of 80 ms or less, followed by a silence period of at least 160 ms (Grace et al., 1984; Overton et al., 1997; Paladini et al., 2014). Using these identification criteria, we may exclude PFC-projecting and amygdala-projecting
midbrain dopamine neurons, as action potential duration does not always accurately determine dopamine-containing neurons (Chieng et al., 2011; Ford et al., 2006; Hnasko et al., 2012; Lammel et al., 2008; Margolis et al., 2006; Margolis et al., 2008; Marinelli et al., 2014; Zhang et al., 2010b). However, our strict criteria allow for the recording of a rather homogenous population of midbrain dopamine neurons. Coordinates for the ventral tegmental area (Fig. 38A) were: anteroposterior -4.5 to -5.5 mm to Bregma, lateral 0.3-1.2 mm, dorsoventral 7.2-9.5 mm below cortical surface. For microiontophoresis, multibarrel pipettes were filled with either: NMDA, 30 mM, dopamine 20 mM, MPH 20 mM, norepinephrine 20 mM, HA-966 20 mM, 7-chloro-kinurenic acid 20 mM, all at pH 7-8 (dissolved into NaCl 147 mM), or a combination of the above and NaCl 2 M for current balancing. The central recording channel was filled with saline (NaCl 147 mM).

III-2-C- Prefrontal cortex inhibition

Adapted from a previous study in rhesus monkeys (Tehovnik et al., 1997), local prefrontal cortex inhibition was achieved by locally perfusing lidocaine (2% w/v in saline, pH 7) at a rate of 2 µl/min immediately prior to intravenous MPH challenge. Two and a half microliters of total volume was injected at each injection site. Two injection sites in total were made per hemisphere at the following coordinates (in mm from Bregma): anteroposterior/lateral: +3/+2 and +2/+1. Two depths per injection site were chosen: 1.5 and 3 mm below cortical surface (Fig. 38B).
Figure 38: Locations of the ventral tegmental area and local PFC lidocaine perfusions.

(A): The small shaded area located ventrally corresponds to the location of the ventral tegmental area (VTA). (B): Representation of local intra-PFC lidocaine perfusions (2% in saline, w/v), performed immediately before intravenous MPH challenge. This diagram is a stack of two coronal slices with anteroposterior coordinates of +3 and +2 mm from Bregma. Four injection sites were made per anteroposterior location. Black dots indicate microperfusion locations, while dotted circles indicate mean diffusion areas adapted from experiments in the rhesus monkey (Tehovnik et al., 1997). The open dot indicates the location of the VTA recording site, seen from the above. Adapted from Paxinos and Watson (1997). Cg1 cingulate cortex area, PrL prelimbic cortex, VTA ventral tegmental area, SNR substantia nigra reticular.

III-2-D- Data analysis

Please refer to the electrophysiology analysis in paragraph II-2-E.

III-3- Results

III-3-A- Methylphenidate, but not atomoxetine, decreases firing and burst activities of VTA dopamine neurons in a dose-dependent manner

As expected, vehicle intravenous administration did not change either the firing (Fig. 39A) or the burst activity (Fig. 39B) of ventral tegmental area dopamine neurons. Methylphenidate, injected intravenously at 2 mg/kg, significantly reduced the firing and burst activity of midbrain dopamine neurons by 48% and 59%, respectively.
The vast majority (20/24) of neurons had their firing activity reduced by more than 20% after 2 mg/kg of MPH (Fig. 40B), but only a few neurons (4/24) remained insensitive to this dose, despite fulfilling all the assessment criteria used for midbrain dopamine neuron characterisation (Fig. 40D). On a smaller population of neurons (n=8), MPH was administered by 2 mg/kg increment doses up to a cumulative dose of 4 mg/kg, which further reduced firing and burst activities of ventral tegmental area dopamine neuron (Fig. 41A,C).

Figure 39: Vehicle administration does not alter the electrophysiological activity of midbrain dopamine neurons.
Neither the firing rate (A) nor the burst activity (B) of ventral tegmental area (VTA) dopaminergic neurons were significantly affected by intravenous vehicle administrations (saline, 0.2 ml/kg).
Figure 40: Methylphenidate decreases the firing and burst activities of midbrain dopamine neurons.

Intravenous administration of a 2 mg/kg single dose of methylphenidate significantly reduced the firing rate (A) and burst activity (C) of 20 out of 24 VTA dopamine neurons. (B): Representative recording examples of such firing rate reduction following MPH exposure, although a few neurons (4/24) remained insensitive to this dose of MPH (D). Boxed is shown a typical action potential waveform of the VTA dopamine neuron recorded in B, which presents the typical notch during the initial positive inflexion. **P<0.01, ***P<0.001 vs. baseline, paired Student’s t-test.
Figure 41: Methylphenidate decreases the firing and burst activities of midbrain dopamine neurons in a dose-dependent manner.
In another population of neurons, a cumulative dose of 4 mg/kg of MPH significantly reduced the firing rate (A) and burst activity (B) of VTA dopamine neurons. (C): Representative recording example of such progressive firing rate reduction following 4 mg/kg intravenous MPH exposure. *P<0.05 vs. baseline, Neuman-Keuls test after significant repeated measures ANOVA.

In contrast to what was observed with MPH, cumulative administrations of atomoxetine by 2 mg/kg increments and up to 10 mg/kg did not change significantly the firing and burst activity of dopaminergic neurons (Fig. 42), although 6 mg/kg of ATX resulted in an almost significant but mild decrease (p=0.06, baseline vs ATX 6 mg/kg, paired Student’s t-test) in baseline burst activity (Fig. 42B).
Figure 42: Atomoxetine does not change the electrophysiological activity of midbrain dopamine neurons.

On a small population of VTA dopamine neurons, atomoxetine was administered up to a cumulative dose of 10 mg/kg but did not change the firing (A) and burst activities (B) of these neurons. (C): Representative recording example of a neuron insensitive to cumulative intravenous ATX administration. Boxed is shown a typical action potential waveform of this VTA dopamine neuron.

III-3-B- Methylphenidate exerts hidden excitatory effects on dopamine neurons

As mentioned before, administration of a single 2 mg/kg dose of MPH significantly decreased the firing rate of dopamine neurons (Fig. 43A-C). Subsequent 0.2 mg/kg eticlopride administration, a dopamine receptor D₂ antagonist, rescued baseline firing and burst activities. For most of the neurons tested, the combination of 2 or 4 mg/kg of MPH and 0.2 mg/kg of eticlopride resulted in higher firing rates and burst activities than under baseline conditions (Fig. 43). These results indicate that initial blockade of the dopamine reuptake transporter by MPH increases dopamine concentrations in the synaptic cleft, which in turn activate the Gᵢ-coupled inhibitory dopamine D₂ autoreceptors. Furthermore, we have demonstrated that MPH exerts
hidden excitatory effects on VTA dopamine neurons and that this effect can only be unmasked if dopamine D$_2$ receptors are inactivated.

Figure 43: Methylphenidate exerts a hidden excitatory effects on midbrain dopamine neurons.
(A, B, C): Two mg/kg of MPH significantly decreased the firing and burst activities of midbrain dopamine neurons, as observed previously. However, dopamine D$_2$ receptor antagonism (eticlopride, 0.2 mg/kg) successfully rescued MPH-induced firing rate decreases, and even further increased the firing and burst activities to levels higher than under baseline condition, revealing therefore the excitatory effects of MPH onto VTA dopaminergic neurons. Following eticlopride, burst activities were higher than baseline in 10 out of 20 neurons. Representative firing histogram example of one neuron which was silenced by MPH (C), and a less sensitive neuron, still responding to a dose-response of MPH, administered up to 4 mg/kg (F). The selective dopamine D$_2$ receptor antagonist eticlopride not only reversed the MPH-induced effects but produced an additional excitatory effect on the firing rates (A, C, D, F) and burst activities (B, C, E, F). Boxed are shown the corresponding dopamine neuron action potential waveforms. Note that alone, eticlopride did not alter the electrical activities of midbrain dopamine neurons (G-I). *P<0.05, ***P<0.001 vs. baseline, Neuman-Keuls test after significant repeated measures ANOVA.
III-3-C- The excitatory component of MPH depends upon both \(D_1 \) and alpha-1 receptors

In 23 neurons, the combination of 2 mg/kg of MPH and 0.2 mg/kg of eticlopride (MPH/eti) resulted in a 27% and 74% significantly higher firing and burst activity (respectively Fig. 44A and 44B). Pre-administration of the alpha-1 receptor antagonist prazosin at 1.5 mg/kg, did not prevent (firing: \(F_{(1,26)}=0.16, p>0.5 \), burst: \(F_{(1,26)}=0.29, p>0.6 \)) the excitatory effect observed following MPH and eticlopride administration (Fig. 44A-C). Three neurons did not show any increase in firing activity following MPH and eticlopride. Similarly, initial dopamine \(D_1 \) receptor antagonism with SCH23390 (0.6 mg/kg) failed to prevent such effects (firing: \(F_{(1,26)}=0.08, p>0.7 \), burst: \(F_{(1,26)}=0.53, p>0.4 \), Fig. 45A-C). However, the excitatory effects of MPH following \(D_2 \) blockade were completely lost when the combined administration of both prazosin (1.5 mg/kg) and SCH23390 (0.6 mg/kg) was performed (7/8 neurons, Fig. 46A-C), showing that both \(D_1 \) and alpha-1 receptors are required for MPH to exert its excitatory effects. On their own, prazosin and SCH23390 did not exert any significant effects on the firing and burst activities of VTA dopamine neurons.
Figure 44: Adrenergic alpha-1 receptors alone are not responsible for the excitatory effects of methylphenidate.

(A, B): When the alpha-1 receptor antagonist prazosin was pre-administered (1.5 mg/kg), MPH (2 mg/kg) still exerted excitatory effects on VTA dopamine neurons following dopamine D₂ receptor antagonism (eticlopride 0.2 mg/kg). (C): Representative firing histogram example of a recording where prazosin was cumulatively administered as a pre-treatment and with progressive 0.5 mg/kg increments, up to a dose of 1.5 mg/kg. Boxed is shown the corresponding dopamine neuron action potential waveform. ns: non-significant, *P<0.05, **P<0.01, ***P<0.001 vs. baseline, Bonferroni test after significant repeated measures two-way ANOVA.
Figure 45: Dopamine D₁ receptors alone are not responsible for the excitatory effects of methylphenidate.

When the dopamine D₁ receptor antagonist SCH23390 was pre-administered (0.6 mg/kg), the combination of MPH (2 mg/kg) and eticlopride (0.2 mg/kg) still induced higher firing (A) and burst activities (B) of VTA dopamine neurons than under baseline conditions. (C): Representative time course example of such recordings. Boxed is shown the corresponding dopamine neuron action potential waveform. In this neuron, eticlopride was administered before MPH. ns: non-significant, *P<0.05, **P<0.01, ***P<0.001 vs. baseline, Bonferroni test after significant repeated measures two-way ANOVA.
Figure 46: Methylphenidate requires both adrenergic alpha-1 and dopamine D₁ receptors to exert its excitatory effects on midbrain dopamine neurons.

Both alpha-1 receptor antagonism (prazosin 1.5 mg/kg) and dopamine D₁ receptor antagonism (SCH23390 0.6 mg/kg), administered as a pre-treatment, successfully prevented MPH/eticlopride-induced activation of firing (A) and burst (B) activities in almost all of the neurons recorded this way (7/8). ns: non-significant, **P<0.01, ***P<0.001 vs. baseline, $P<0.05$ vs. specified conditions, Bonferroni test after significant repeated measures two-way ANOVA.

We then examined whether the hidden MPH-induced excitatory effect could be related to glutamate receptor activation. Interestingly, 0.5 mg/kg of intravenous MK 801 administration, an NMDA receptor antagonist, totally prevented the occurrence of higher firing and burst activities observed following MPH and D₂ antagonism in 5 out of 7 neurons tested this way (71%, Fig. 47). MK801 intravenous administration, up to 0.5 mg/kg, did not alter baseline firing nor burst activities of midbrain dopamine neurons (not shown). There was no interaction between intravenous challenges and MK 801 treatment (firing: F(1,28)=0.37, p>0.5, burst: F(1,28)=1.02, p>0.3).
Figure 47: Importance of glutamatergic neurotransmission in methylphenidate-induced excitatory effects.

(A, B): Pre-treatment with the selective glutamatergic antagonist MK801 (0.5 mg/kg) completely prevented MPH-induced excitatory effects, observed following dopamine D2 receptor antagonism. (C): Representative recording example of such protocol. Boxed is shown the corresponding dopamine neuron action potential waveform. Note a return to baseline firing rate levels following recovery of MPH-induced firing rate reduction by eticlopride. ns: non-significant, **P<0.01, ***P<0.001 vs. baseline, $P<0.05$ vs. specified conditions, Bonferroni test after significant repeated measures two-way ANOVA.

III-3-D- Influences of local catecholamines

Dopamine, norepinephrine and methylphenidate were applied locally onto ventral tegmental area dopamine neurons using iontophoresis. Under baseline conditions, dopamine, norepinephrine and MPH all strongly inhibited the firing activities of midbrain dopamine neurons (Fig. 48A,B). Interestingly, after MPH administration and dopamine D2 receptor antagonism, dopamine remains an inhibitory neurotransmitter on the firing activity, but its efficacy is significantly lower (p<0.001) than under baseline conditions. On the contrary, both MPH and norepinephrine tend to exert small excitatory effects on the firing activity of dopaminergic neurons following D2 blockade (Fig. 48A,C).
Figure 48: The excitatory effect induced by the combination methylphenidate/eticlopride does not mainly involve local catecholamine receptors. (A, B): Local iontophoretic applications of dopamine, norepinephrine and methylphenidate on VTA dopamine neurons result in firing activity inhibitions. After MPH and eticlopride administration (C), these inhibitions are no longer observed. Under these conditions, norepinephrine and MPH produce only very small excitations, while locally applied dopamine remains devoid of action. Note the strong efficiency of norepinephrine to suppress spike generation under baseline conditions (A, B), which is a dopamine D2 receptor dependent mechanism, as these effects were not observed following D2 receptor blockade (A, C). Here and in the following figures, horizontal bars indicate the transient ejection periods using microiontphoresis. **P<0.01, ***P<0.001 vs. respective 0 nA currents, Neuman-Keuls test after significant ANOVA. $P<0.05, $$$P<0.001$ vs. respective 10 nA currents, unpaired Student’s t-test.
III-3-E- Importance of glutamatergic neurotransmission and NMDA receptors in MPH-induced excitatory effects

The impact of local glutamatergic neurotransmission was investigated on the excitatory effects of MPH. Local application of HA-966, a glycine NMDA receptor antagonist, or kinurenic acid, a ionotropic glutamate receptor antagonist, did not change the overall spontaneous firing (Fig. 49A) or burst activity (Fig. 49B) of dopamine neurons. However, we found that HA-966 had no consequences on VTA midbrain neuron firing rates in 8 out of 11 neurons (73%), increased firing rates in 1 neuron (9%) and decreased firing rates in 2 neurons (18%). On the other hand, kinurenic acid decreased firing rates in 10 out of 13 neurons (77%), increased firing rates in 1 neuron (8%) and had no effect in only 2 neurons (16%). Neither of the two antagonists ever exerted any effect on burst activities in all of the neurons (100%) tested this way. Fig. 49C-E shows that both kinurenic acid and HA-966 tend to exert a stronger inhibition of VTA dopamine neurons following methylphenidate and eticlopride exposure than under baseline conditions. These results indicate that MPH exerts its excitatory effects through mechanisms that may depend upon local ionotropic glutamate receptor activation. The fact that both antagonists did not reduce burst activity was unexpected, as current literature suggests that the burst activity of midbrain dopamine neurons strongly depends upon tonic activation of local NMDA receptors. In the prefrontal cortex, however, HA-966 was very efficient in reducing NMDA-induced firing rate activations of pyramidal neurons (not shown, these results have been recently submitted for publication).
Figure 49: The importance of local glutamatergic neurotransmission in methylphenidate-induced excitatory effects.

Local application of kinurenic acid, an ionotropic glutamate receptor antagonist, or HA-966, a glycine NMDA receptor antagonist, did not change spontaneous firing (A) or burst activities (B), even following both MPH and eticlopride exposures (C). Note that some neurons are more sensitive than others to local glutamatergic receptor blockade (D, E) and that these firing rate reductions can be potentiated following MPH/eticlopride administration.

As expected, local 10 nA NMDA application induced significant strong increases in firing and burst activity of ventral tegmental area dopamine neurons (respectively increasing activities by 2.4 and 2.2 fold, p<0.001 vs 0 nA, Fig. 50). NMDA (10 nA) increased firing rates, which was not reversed by HA-966 (10 nA, Fig. 50A,B), contrary to what was observed in the prefrontal cortex (not shown), whereas kinurenic acid (10 nA) strongly reduced NMDA-induced increase of firing (p=0.0024 vs NMDA alone, Fig. 50A) and burst activities (p=0.012 vs NMDA alone, Fig. 50B).
Figure 50: The importance of local NMDA neurotransmission on midbrain dopamine neurons.
(A): Local application of NMDA (10 nA) produced strong and transient firing rate increases in VTA dopamine neurons, an effect reversed by kinurenic acid applications (10 nA), but not HA-966 (10 nA). (B): Similarly, burst activities were increased following NMDA application, an effect only reversed by kinurenic acid applications. (C, D): Representative recording examples illustrating such effects. *P<0.05, **P<0.01, vs. specified conditions, Neuman-Keuls test after significant ANOVA.

III-3-F- Role of the PFC in MPH-induced excitatory effects

Finally, prefrontal cortex inactivation was achieved by local intra-PFC lidocaine perfusion (Fig. 38B). Under these conditions, no excitatory effects following MPH/eti on cell firing and burst activity were observed in 75% of all recordings (6/8 neurons, Fig. 51A-C). There was no interaction between intravenous challenges and PFC inhibition (firing: F_{(1,29)}=0.64, p>0.4, burst: F_{(1,29)}=0.11, p>0.7). These results highlight the importance of the neurotransmission connexion between the PFC and the VTA, in the excitatory effects of methylphenidate following D₂ receptor blockade.
Figure 51: The role of the prefrontal cortex in methylphenidate-induced excitatory effects on midbrain dopamine neurons.
Inactivation of the prefrontal cortex (PFC) using micro-perfusions of lidocaine (2% w/v, 2.5 µl per injection site, 2 µl/min, 8 sites in total) prevented MPH-induced excitatory effects on both the firing (A) and burst activities (B) of VTA dopamine neurons. Microperfusions of lidocaine were performed immediately prior to the intravenous MPH challenge. ns: non-significant, **P<0.01, ***P<0.001 vs. baseline, $$P<0.05$$ vs. specified conditions, Bonferroni test after significant repeated measures two-way ANOVA.

III-4- Discussion

Here, we have demonstrated that MPH, following D₂ receptor blockade, exerts strong excitatory effects on ventral tegmental area dopamine neurons. This excitatory input may involve a combination of alpha-1, D₁ and glutamate receptors, as well as functional meso-cortico connexions, which are key centres involved in addiction (Chen et al., 2011).

As expected, methylphenidate induced dose-dependent inhibition of both the firing and burst activities of midbrain dopamine neurons (Fig. 43), as observed before with MPH (Choong et al., 2004; Shi et al., 2004) or other psychostimulants (Einhorn et
MPH blocks the dopamine reuptake transporter, which prevents extracellular dopamine from being reuptaken into the presynaptic element (Markowitz et al., 2008; Volz et al., 2008). This increase in extracellular dopamine concentration (Wilens, 2008) activates the inhibitory dopamine D2 autoreceptors, therefore producing decreases in both firing rates and burst activities (Centonze et al., 2002), through D2/D3-mediated negative feedback (Shi et al., 2000a; Viggiano et al., 2004). Intravenous exposure to ATX did not induce firing or burst activity alterations in midbrain dopamine neurons (Fig. 42). Atomoxetine does not change extracellular levels of dopamine in both the striatum and the nucleus accumbens (Bymaster et al., 2002). Dopamine D2 receptors are major actors in dopaminergic neurons regulation (Guiard et al., 2008; Mercuri et al., 1997). Dopamine neuron firing activity alterations are believed to play a crucial role in the behavioural abuse responses to psychostimulants (Ellinwood et al., 1983; Wolf et al., 1993). The firing inhibition produced by either MPH or D2 receptor agonists can be reversed by selective D2 antagonists (Ackerman et al., 1993; El Mansari et al., 2010; Federici et al., 2005; Tepper et al., 1997). However, we have shown here that firing and burst activity rescuing revealed the excitatory effects of MPH on these neurons (Fig. 43-44). A few studies have brought out the fact that psychostimulant administrations, followed by D2 receptor antagonism, lead to such effects (Shi et al., 2000b; Shi et al., 2004). However, we found that simultaneous alpha-1 and D1 receptor antagonisms are required to suppress the MPH-induced excitatory effects (Fig. 46), while either alpha-1 or D1 antagonism alone failed to reduce such effects (Fig. 44-45). Such results differ from both the aforementioned studies, as the authors found only a partial effect of alpha-1 blockade, but not D1 blockade (Shi et al., 2000a; Shi et al., 2004). Adrenergic alpha-1 receptor inhibition is known to reduce bursting activity as well as regularising the firing rates of VTA dopamine neurons, while alpha-2 receptor blockade increased burst activities and provoked irregular firing (Grenhoff et al., 1993b). In fact, alpha-1 inhibition sometimes increases, sometimes decreases firing and burst activities, according to some authors and in agreement with what we found, showing no overall effect due to inconsistencies. Another study also demonstrated that increases in extracellular adrenergic levels, induced by reboxetine exposure, will activate bursting discharges of VTA dopamine neurons, an effect that is probably mediated by the activation of excitatory alpha-1 receptors (Linner et al., 2001). In the present study, we did not observe any reduction of burst activity following 1.5 mg/kg of prazosin administration, even after 0.5 mg/kg progressive increments (Fig.
Noradrenergic neurotransmission may play a crucial role in the regulation of VTA dopamine neurons, mainly through direct connexion from the locus coeruleus to the VTA, as shown by previous anatomical and electrophysiological studies (Grenhoff et al., 1993a; Jones et al., 1977; Simon et al., 1979). In parallel, VTA projections onto the locus coeruleus have been observed (Beckstead et al., 1979; Deutch et al., 1986; Samuels et al., 2008; Simon et al., 1979; Swanson, 1982), although they remain very sparse (less than 1% of all VTA dopamine neurons project onto the locus coeruleus) (Swanson, 1982). Interactions between the locus coeruleus and the VTA are crucial in mediating the effects of psychostimulants such as amphetamines (Ferrucci et al., 2013). Indeed, following methamphetamine exposure, initial norepinephrine release by noradrenergic neurons from the locus coeruleus, combined with dopamine release from midbrain terminals, will activate PFC functions (Ferrucci et al., 2013). Moreover, norepinephrine-deficient mice present hypersensitivity to cocaine and amphetamine (Schank et al., 2006; Weinshenker et al., 2008). In our study, local noradrenergic pathways may be partially required for MPH-induced excitatory effect. Noradrenergic modulation of midbrain dopamine neurons has not been clearly characterised. Indeed, a few studies have shown that the norepinephrine reuptake inhibitor reboxetine can increase the firing activities of midbrain dopamine neurons (El Mansari et al., 2010; Linner et al., 2001). The alpha-1 receptor antagonist prazosin is known to reduce bursting activity, while the alpha-2 receptor antagonist idazoxan has opposite effects (Grenhoff et al., 1993a; Grenhoff et al., 1993b). Contradictory results emerge within our study, as the norepinephrine reuptake inhibitor atomoxetine did not induce firing rate inhibition of VTA dopamine neurons (Fig. 42), unlike reboxetine. To be noted: alone, eticlopride did not significantly affect the overall electrical discharges of VTA dopamine neurons (Fig. 45C).

Under baseline conditions, local iontophoretic application of dopamine, and norepinephrine exerted strong inhibition of dopamine neuron firing activities (Fig. 48), as emphasised before (Einhorn et al., 1988; Guiard et al., 2008; Kiyatkin et al., 1998; Paladini et al., 2004; Rosenkranz et al., 1999; White et al., 1984; White et al., 1986). According to some studies, norepinephrine strongly binds to the G\textsubscript{i}-coupled dopamine D\textsubscript{4} receptor, which belongs to the D\textsubscript{2}-like family, hence producing firing inhibition
In the present study, we witnessed a strong reduction of dopamine and norepinephrine-induced firing rate inhibition following eticlopride administration (Fig. 48), which indicates that dopamine and norepinephrine-induced firing rate inhibitions are also both mediated through local dopamine D2-like receptor activation. Our study, for the first time, reports that local methylphenidate application onto VTA dopamine neurons produces a similar effect to what is observed using dopamine, a result of dopamine D2 inhibitory autoreceptors activation following MPH-induced DAT blockade. Surprisingly, when methylphenidate and eticlopride were administered, dopamine, but not methylphenidate or norepinephrine, still produced inhibitory effects (in all of our recordings) on dopaminergic neuron firing rates (Fig. 48A), although such effects are greatly dampened, which could be partially explained by mutual competition on the dopamine D2 receptor by dopamine (leaking from the pipette) and eticlopride. These results differ from those in the study by Einhorn in 1988, where the author found that local dopamine application does not alter firing parameters following sulpiride administration (Einhorn et al., 1988). In line with our results, one study found that local dopamine application onto VTA dopaminergic neurons leads to firing decreases even during the application of the D2 receptor antagonist raclopride (Guiard et al., 2008). In this study, the authors also found that norepinephrine application leads to firing inhibition under baseline conditions, an effect strongly attenuated under idazoxan iontophoresis, an alpha-2 receptor antagonist.

In the ventral tegmental area, burst activity is regulated by local neurotransmission and each bursting activity releases greater quantities of dopamine at dopamine terminals versus single or bursting spike activity (Bean et al., 1991; Gonon, 1988; Oster et al., 2015). Alternate firing modes between bursting and single discharges are vital to maintain balanced D1 and D2 receptor occupancies (Dreyer et al., 2010). Indeed, in our experiment, local NMDA application induced firing rate increases and burst discharges (Fig. 50), as seen before (Chergui et al., 1993; Johnson et al., 1992; Kitai et al., 1999; Mereu et al., 1997; Overton et al., 1997; Wickham et al., 2015; Zweifel et al., 2009), probably through enhancement of excitatory currents (Wu et al., 1999). However, only the broad ionotropic glutamate receptor antagonist kinurenate, or 7-chloro-kinurenic acid (Mok et al., 2009), was effective in abolishing NMDA-induced activations (Fig. 50A,C). The specific NMDA/glycine antagonist HA-966 failed to
reduce such activations in midbrain neurons (Fig. 50A,B), but strongly dampened NMDA-induced firing rate activations in cortical neurons (not shown). These two antagonists did not significantly modify spontaneous firing and burst activities of midbrain dopamine neurons (Fig. 49A-B), although a small population of neurons were mildly affected by these antagonists under both baseline and after MPH/eti conditions, explaining such variations in the responses (Fig. 49C-E). One study found opposite results, where intraperitoneal administration of kinurenic acid produced firing and burst activity decreases (Linderholm et al., 2007). These differences can be explained by the techniques used. Indeed, the authors administered a rather high intraperitoneal dose of 4-Chlorokinurenine, a precursor to 7-chloro-kinurenic acid, that will systemically block all NMDA receptors in the brain. Therefore, glutamatergic neurotransmission pathways, arising from other brain regions, may directly or indirectly play an important role in the regulation of midbrain dopamine neurons, an effect that we did not witness locally, although a previous study from our laboratory showed that 85% of midbrain dopaminergic neurons are activated following 0.5 mg/kg of intravenous MK801, a non-competitive NMDA antagonist (Bennett et al., 2007), probably as a consequence of the inhibition of GABAergic pathways. Here, we suggest that only a minority of dopamine neurons are under direct tonic NMDA receptor activation, while other neurons remain insensitive to local glutamate neurotransmission. Here, we therefore counterbalance previous results showing that tonic activations of NMDA receptors are responsible for bursting discharges of midbrain dopamine neurons. Moreover, some dopamine neurons might be activated by kinurenic acid because of its diffusion onto GABAergic interneurons, located at close proximity to dopaminergic neurons, alleviating the inhibition of firing activities from interneurons on these neighbouring dopamine neurons. Such effects on interneurons have yet to be identified. Moreover, intra-VTA infusion of a GABA antagonist induced strong dose-dependent dopamine release (Giorgetti et al., 2002).

Finally, our results demonstrate the role of NMDA receptors in mediating the hidden MPH-induced excitatory effects. Many studies have found that burst activity is strongly regulated by afferent PFC connexions (Lodge, 2011; Murase et al., 1993; Omelchenko et al., 2007; Overton et al., 1997; Patton et al., 2013; Svensson et al., 1989). Pre-treatment with the non-competitive NMDA antagonist MK 801 at 0.5 mg/kg significantly prevented the MPH-induced excitatory effects (Fig. 47). Local MK 801
application led to dopamine neurons excitation in one study, a result that partially corroborates our findings (French et al., 1993). Another study suggested that local MK 801 application may also target GABA neurons, which are major actors in dopamine neuron modulations within the VTA (Liu et al., 2012a) and the substantia nigra (Nissbrandt et al., 1994). Lidocaine, a blocker of fast voltage-gated sodium channels (Catterall, 2002; Courtney, 1975; Sheets et al., 2003; Vedantham et al., 1999; Yeh et al., 1985), is used in medicine as a local anaesthetic (McDonald et al., 2015; Perniola et al., 2014; Terkawi et al., 2015; Yung et al., 2015) or in intravenous preparations (Hassani et al., 2015; Honarmand et al., 2015; Khan et al., 2015; Kranke et al., 2015; Papapetrou et al., 2015). This powerful anaesthetic is also routinely used in veterinary medicine (DeRossi et al., 2015; Hendrickx, 2015; Hermeto et al., 2015; Morgaz et al., 2014). It has been frequently used to induce cortical inactivation in animal models (Ahn et al., 2002; Martin, 1991; Sara et al., 1995; Tehovnik et al., 1997; Uehara et al., 2007; Valenti et al., 2009). When lidocaine was slowly pre-perfused within the PFC, no hidden excitatory effects of MPH were observed following D₂ receptor antagonism in the majority of the neurons tested (Fig. 51). This highlights the importance of PFC glutamatergic descending connexions onto the VTA in response to MPH/eti administration, in line with another study which clearly demonstrated that PFC lesion prevents MPH behavioural sensitisation (Lee et al., 2008). Moreover, it has been established that these pathways are essential in maintaining normal VTA functions (Almodovar-Fabregas et al., 2002; Carr et al., 2000; Chen et al., 2011; Fujisawa et al., 2011), which can be disrupted under psychostimulant administration (Wolf, 1998), mainly through calcium channel regulations (Rajadhyaksha et al., 2004; Rajadhyaksha et al., 2005).

To conclude, we propose that MPH firstly activates both dopamine D₁ and adrenergic α₁ receptors within the PFC, which, in turn, trigger glutamate release in the midbrain originating from cortico-tegmental projections, inducing in fine NMDA receptor activation and therefore enhancement of the firing rates of VTA dopaminergic neurons. Such an excitatory input of MPH on midbrain dopamine neurons can only be observed when dopamine D₂ inhibitory autoreceptors are inactivated.
Chapter IV – The impact of chronic methylphenidate administration on adult animals.

IV-1- Introduction

Some studies have reported that chronic stimulant use may lead to some growth deficits in adolescents (Charach et al., 2006; Poulton et al., 2003; Poulton et al., 2013; Rose et al., 2015; Safer et al., 1972; Spencer et al., 2006) and rodents (Komatsu et al., 2012), although this is disputed by a few (Biederman et al., 2003; Harstad et al., 2014; Siros et al., 2009). Other studies reported changes in fertility (Adriani et al., 2006; Fazelpour et al., 2012; Ramasamy et al., 2014). Concerns arise with acute and chronic psychostimulant uses, as they might induce long-lasting neuronal adaptations (Achat-Mendes et al., 2003; Konova et al., 2015; Lepelletier et al., 2015; Marco et al., 2011; Urban et al., 2013a). As mentioned before, ADHD drugs may sensitise patients to later legal (Bron et al., 2013; Dalsgaard et al., 2014; Rush et al., 2005; Vansickel et al., 2011) and/or illegal drug abuse (Dalsgaard et al., 2014; Dos Santos Pereira et al., 2015; Jordan et al., 2014; Vansickel et al., 2011). Indeed, in adults, acute MPH induces craving for nicotine, increases tobacco consumption and smoking. In humans, ADHD adolescents have higher risks of substance use disorders when compared to the background population. Animal studies performed on hypertensive rats (SHR strain, an animal model of ADHD) have revealed that an adolescent MPH treatment at 1.5 mg/kg for 30 days, orally and followed by 22 days of drug withdrawal, but not an ATX treatment (0.3 mg/kg, i.p., 22 days of withdrawal), can induce higher cocaine sensitivity in adulthood (Jordan et al., 2014; Somkuwar et al., 2013). Interestingly, acute methamphetamine administration leads to a rise in blood sugar (glucose) levels (Graham et al., 2010), probably through elevated levels of circulating corticosterone, as observed in that study. Methamphetamines induce hyperthermia and increase brain extracellular glucose (Pachmerhiwala et al., 2010). Pre-treatment with prazosin (1 mg/kg, intraperitoneally) prevented the MDMA-induced high extracellular glucose
levels, but not hyperthermia. Such effects may arise from independent mechanisms following MDMA administration. Besides, extracellular glucose levels and neuronal activity are closely linked (Fellows et al., 1992; Routh, 2010; Silver et al., 1994; Vazirani et al., 2013), mainly through glia metabolism coupling (Tsacopoulos et al., 1996; Turner et al., 2011a). In this fourth chapter, we will assess how chronic exposure to methylphenidate during adulthood can impact on physiological parameters such as body growth and glycaemia as well as neuronal adaptations of VTA dopamine neurons, PFC pyramidal neurons or striatal medium spiny neurons. With this aim, we will investigate whether chronic MPH can induce long-lasting desensitisation of dopamine D₂ receptors, NMDA neurotransmission adaptations and NMDA receptor 2B expression as well as striatal dopamine release.

IV-2- Material and Method

IV-2-A- Subjects and groups

Seventy-eight male Sprague-Dawley rats were purchased from Charles River, UK. Animals were housed in groups of 2-4 per cage, maintained at 20-22°C with humidity rates above 40% under a 12:12 L/D cycle with lights ON at 07h00. Food and water were provided ad libitum. Animals were allowed a 3-day acclimatisation period after delivery. All experiments were performed during the light phase and with permission from the UK Home Office and De Montfort University Ethics Committee under the Project Licence 60/4333 and with the Personal Licence 60/13750.

Post-adolescence animals weighing 150 grams were used at the beginning of each treatment. Animals were randomly assigned to one of the following groups (Fig. 52):

- Animals receiving 4 mg/kg/day of MPH (or vehicle alone) in 1.2 ml/kg of saline, intraperitoneally and for 15 consecutive days.
- Animals voluntarily drinking 5 mg/kg/day of MPH (or vehicle alone) in 2 ml/kg of sucrose 10% (w/v) and for 15 consecutive days.
All experiments were performed the day following the last day of administration, hence allowing a washout period.

Figure 52: Experimental protocol for chronic methylphenidate treatment during adulthood.

Following 3 days of acclimatisation, rats were given MPH at doses of 4-5 mg/kg/day. Administration routes were either intraperitoneal (using a saline 0.9% w/v as vehicle) or oral (using a sucrose 10% w/v as vehicle). In the oral dosing protocol, each rat voluntarily drank 2 ml/kg of solution. MPH was either dissolved in saline 0.9% or sucrose 10%. Following 15 consecutive days of treatment, animals were allowed a 24-hour washout period. n values represent the number of animals included in each group.

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Administration routes</th>
<th>Dose (mg/kg/day)</th>
<th>Experimental days</th>
<th>n=</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose 10% MPH in Sucrose</td>
<td>Oral</td>
<td>5</td>
<td>Acclimatisation</td>
<td>43</td>
</tr>
<tr>
<td>MPH NaCl</td>
<td>i.p.</td>
<td>4</td>
<td>daily administrations</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Washout</td>
<td></td>
</tr>
</tbody>
</table>

IV-2-B- In vivo extracellular single unit electrophysiology

Please refer to paragraph III-2-B. In this chapter, the number of putative ventral tegmental area dopamine neurons per track was recorded by recording the total number of active neurons encountered during one electrode descent within the region of interest.

IV-2-C- Evaluation of glycaemia and growth

Blood sugar level, or glycaemia, was measured immediately following anaesthesia induction. A single blood drop was taken from the lateral tail vein and blood sugar levels were assessed using the Accu-Chek® blood glucose system (Aviva). In the rat, normal blood sugar levels range between 5.5 and 8.1 mM (Akbarzadeh et al., 2007; Florence et al., 2014; Kahn et al., 1991; Wang et al., 2010b). Experimentally-induced
diabetes increases glycaemia to an average of 20 mM (Kahn et al., 1991; Manjunath et al., 2009; Nagai et al., 2013; Rasch, 1979), although some consider the limit to be above 11.1 mM (Lambertucci et al., 2012).

Animals were weighed daily, at 9 AM. Growth parameters were established by comparing the weights of the animals before and at the termination of the treatment. Therefore, the weight ratio between the end and the beginning of the chronic treatment was measured for each animal and was a direct reflexion of body weight gain.

IV-2-D- In vitro 3H-dopamine release

At the termination of the treatments, some striata were used to determine the capacity of MPH to induce tritiated dopamine release. For the complete method, please refer back to paragraph I-2-B.

IV-2-E- Western Blots

Please refer to paragraph II-2-D.

IV-2-F- Data analysis

Please refer to previous paragraphs. In our model, glycaemic values above 20 mM (3.6 g/l) were arbitrarily considered diabetic. For cell per track protocols, the total number of spontaneously firing cells per electrode descent was recorded and expressed as a mean ± standard error of the mean (S.E.M.) for each group.
IV-3- Results

IV-3-A. Effects of treatments on growth and blood sugar levels

Oral administrations of a sucrose 10% solution, at a dosing schedule of 4 ml/kg/day and for 15 consecutive days, tended to increase blood sugar levels (p=0.065), compared to animals not receiving oral dosing, whether given MPH or not (Fig. 53A). In parallel, 4-5 mg/kg/day of methylphenidate and for 15 days did not significantly change glycaemia compared to similar vehicle administration (Fig. 53B). Therefore, neither dosing routes nor treatments could significantly alter blood glucose concentrations.

Figure 53: Chronic exposures to methylphenidate or sucrose do not alter blood sugar levels.
(A): Chronic oral ingestion of a 10% sucrose solution (2 ml/kg) almost significantly increased blood sugar levels (p=0.065, unpaired Student’s t-test), whether MPH was given or not. (B): Chronic exposure to MPH (5 mg/kg/day) did not influence blood sugar levels (glycaemia), measured with the Accu-Chek system kit (Aviva).

Animals treated intraperitoneally did not show any signs of slower growth (Fig. 54A). However, it was initially found in our first group of animals that daily intraperitoneal administrations of both vehicle (n=28) and MPH (4 mg/kg/day, n=19) induced a 4% significant reduction in weight gain (p=0.04 vs non-i.p., unpaired Student’s t-test), compared to animals treated orally (Fig. 54B). Similarly, daily MPH for 15 consecutive days did not affect growth parameters (Fig. 54C), reinforcing the hypothesis that MPH is not positively correlated to slower growth rates.
Figure 54: Impact of intraperitoneal dosing and methylphenidate on weight gain.

Daily intraperitoneal administrations did not alter total body weight gain (A), although one population of animals included in a previous study showed significantly reduced weight gain (B). Chronic exposure to 4-5 mg/kg/day of MPH did not delay growth (C). *P<0.05, unpaired Student’s t-test.

IV-3-B- Chronic methylphenidate induces MPH-insensitivity in VTA dopamine neurons

Different groups were used within our study. Indeed, animals received 4-5 mg/kg of MPH (or corresponding vehicle) either orally or intraperitoneally, for 15 consecutive days. Based upon similar responses to MPH regardless of frequency and administration route, groups were pooled between controls (naive and vehicle) and MPH-treated. Indeed, we did not observe any qualitative or quantitative difference between the two different administration routes (oral and intraperitoneal) and neuronal responses to MPH or eticlopride challenges. On a small naive population (n=10), methylphenidate was administered intravenously at 2 mg/kg. As previously mentioned (Chapter III, Fig. 43A,C), this dose successfully decreased firing and burst activities of ventral tegmental area dopamine neurons (n=9), an effect reversed after dopamine D$_2$ receptor antagonism using 0.2 mg/kg of eticlopride. Similarly, vehicle-treated animals displayed similar responses to both MPH and eticlopride, whether animals were treated with sucrose only (oral dosing) or saline (intraperitoneal dosing) (Fig. 55). However, in animals chronically treated with 4-5 mg/kg/day of MPH, the intravenous MPH challenge (2 mg/kg) failed to significantly decrease both firing and burst activities of midbrain dopamine neurons (Fig. 55), a result not observed with animals treated with the vehicle only (Fig. 55). Examples of representative firing rate histograms from naive, vehicle and oral MPH animals are represented respectively in Fig. 56A, B and C.
Identical representations are displayed on Fig. 57A and B for intraperitoneal administrations. Note that reversal of the MPH-induced decrease of electrical activities with eticlopride led to significantly higher firing rates compared to baseline activities in the majority of all recordings (Fig. 55A, 57A).

Figure 55: Chronic methylphenidate exposure induces tolerance in midbrain dopamine neurons to subsequent intravenous challenges.
When adult rats were chronically exposed to MPH (4-5 mg/kg/day), tolerance to subsequent intravenous challenges with MPH (2 mg/kg) was observed in VTA dopamine neurons, assessed by no significant change of the firing (A) and burst activities (B) of such neurons following MPH challenges in MPH-treated animals, contrary to what was seen in control animals (vehicle). Note successful recovery following eticlopride (0.2 mg/kg). Our different dosing routes (oral or intraperitoneal) did not produce any differences in the responses to either MPH or eticlopride. Therefore, here and in some following figures, groups of animals were pooled based upon similar responses. *ns*: non-significant, **P<0.01 vs. respective baselines, $$$P<0.01, $$P<0.001 vs. specified conditions, Bonferroni test after significant repeated measures two-way ANOVA.
Figure 56: Tolerance to methylphenidate challenges in midbrain dopamine neurons recorded from orally treated animals.

In naive (A) and vehicle animals (B), intravenous challenge with 2 mg/kg of MPH considerably reduces spike generation of VTA dopamine neurons, an effect lost (tolerance) following chronic MPH treatment (C). Note that tolerance was observed even following 4 mg/kg of intravenous MPH challenge.
Similarly to what was observed previously, vehicle animals showed strong sensitivity to intravenous MPH challenges (A), while tolerance was observed in animals chronically exposed to MPH (B). Tolerance was even observed following 4 mg/kg of intravenous MPH challenge.

IV-3-C: Chronic methylphenidate does not modify baseline VTA neuronal population activities but triggers burst activity increases following intravenous MPH and D₂ blockade challenges

We then considered whether chronic MPH could affect the ventral tegmental area neuronal population (Fig. 58A) before and after intravenous MPH and eticlopride challenges. In both control and MPH-treated animals, baseline firing and burst activities as well as the total number of spontaneously discharging dopamine neurons are not significantly altered following 15 days of chronic 4-5 mg/kg/day MPH treatment (respectively Fig. 58B, C and D). After MPH and D₂ blockade challenges (respectively 2 and 0.2 mg/kg), both groups displayed similar neuronal responses (Fig. 58B-D).
Figure 58: Neuronal populations before/after methylphenidate and eticlopride administrations and their respective responses.

(A): In this experiment, a cell per track protocol was performed, where spontaneously discharging VTA dopamine neurons were recorded per electrode descent. Vertical black bars indicate positions of the descents, while black dots indicate locations of some of the spontaneously discharging VTA dopamine neurons. Determined from stereotaxic coordinates. (B, C): In both control and MPH-treated animals (4-5 mg/kg/day), the global activity of dopamine neurons is not significantly altered after MPH administration and dopamine D₂ receptor blockade. (D): The total number of active dopamine neurons found in each track remained unchanged in both groups. n values indicate the number of neurons included. *P<0.05, **P<0.01 vs. respective baselines, Neuman-Keuls test after significant ANOVA.

IV-3-D- Chronic methylphenidate leads to dopamine transporter desensitisation rather than D₂ receptor desensitisation

Following our results concerning MPH-insensitive dopaminergic neurons, we tested whether desensitisation arises at the dopamine transporter or the dopamine D₂ receptor level. Intravenous administrations of a single 20 µg/kg dose of quinpirole, a dopamine D₂ receptor agonist, successfully mimicked the 2 mg/kg MPH challenge by significantly decreasing the firing and burst activities of 10 out of 10 VTA dopamine neurons (firing: F(2,16)=53.99, p<0.0001, burst: F(2,16)=3.54, p<0.05, Fig. 59). Both groups (MPH-treated animals and vehicle groups) displayed similar sensitivities to D₂ receptor agonism (respectively 77.3% and 76.4%), calculated by the percentage of firing rate decrease before and following quinpirole administration (Fig. 59B). These results indicate that chronic MPH administration does not induce dopamine D₂ receptor desensitisation. It should be noted that the neuronal firing rates returned to the exact
same baseline levels following both quinpirole (D\textsubscript{2} receptor agonism) and eticlopride (D\textsubscript{2} receptor antagonism) challenges (Fig. 59A), unlike what is observed following MPH/eticlopride challenges.

Figure 59: Chronic treatment with methylphenidate does not induce dopamine D\textsubscript{2} autoreceptor desensitisation.

(A): In both controls and MPH-treated animals, intravenous challenges with 20 µg/kg of quinpirole, a potent dopamine D\textsubscript{2} receptor agonist, strongly decreased the firing activities of VTA dopamine neurons, an effect completely reversed by dopamine D\textsubscript{2} receptor antagonism (eticlopride 0.2 mg/kg). (B): Both groups showed similar sensitivities to quinpirole challenges. (C, D): Representative recording examples in controls and MPH-treated animals. ***P<0.001, Bonferroni after significant repeated measures two-way ANOVA.

Next, we investigated whether the dopamine reuptake transporter could induce such desensitisation, using the *in vitro* neurotransmitter release assay. In control animals, both 10 and 100 µM methylphenidate perfusions successfully induced dose-dependent striatal 3H-dopamine release (Fig. 60), with similar potencies to what was previously seen in naive animal (Chapter I). In contrast, 10 µM of MPH perfusion was not sufficient to induce striatal 3H-dopamine release in animals treated daily with 4-5 mg/kg/day of MPH for 15 days. The subsequent 100 µM MPH perfusion successfully induced tritiated dopamine release, but to a significantly lower degree compared to the control animals (p<0.0001, unpaired Student’s t-test). Taken together, these results
strongly suggest that chronic MPH leads to dopamine transporter desensitisation or down-regulation, as animals belonging to the MPH-treated groups display milder effects for the same MPH concentration (either 10 or 100 µM) to induce dopamine release, rather than dopamine D2 receptor desensitisation, as they display similar sensitivity to dopamine D2 receptor agonism.

Figure 60: Dopamine release tolerance to methylphenidate perfusion in chronically treated animals.

Perfusion of striatal slices from control animals with 10 and 100 µM of MPH induced *in vitro* dopamine release, as observed previously. However, application of 10 µM of MPH in animals chronically treated with MPH failed to induce dopamine release. In MPH-treated animals, 100 µM superfusions of MPH led to significantly lower dopamine release than striatal slices from control animals. n values represent the number of perfusion chambers used. **P<0.01, ***P<0.001 vs. respective baselines, $$P<0.01, $$$P<0.001 vs. respective doses, Neuman-Keuls after significant ANOVA. Here, n values represent the number of perfusion chambers used.

IV-3-E- The impact of chronic methylphenidate on the spontaneous and glutamate-induced firing activity of PFC pyramidal neurons, striatal MSN and NMDA2B protein expression

Compared to controls, animals treated during adulthood with a chronic MPH treatment (5 mg/kg/day, orally for 15 days) displayed a significantly higher firing activity of pyramidal neurons in the PFC (p=0.01, unpaired Student’s t-test, Fig. 61A). Such treatment did not affect burst discharge (Fig. 61B) or the total number of active pyramidal neurons found in one electrode descent (Fig. 61C), although small but non-significant increased tendencies were observed (p=0.1 and p=0.24, respectively,
unpaired Student’s t-test). In a large population of neurons (n>40), NMDA was locally applied (30 mM) onto pyramidal neurons using various iontophoresis currents. In both vehicle (saline) and MPH-treated animals (MPH 4 mg/kg/day, intraperitoneally and for 15 days), different currents of NMDA (5, 10 and 15 nA) all successfully triggered large neuronal firing activation (Fig. 61D). No difference in the potency of NMDA to induce such activation was found between the two groups. When medium spiny neurons (MSN) were studied, we found a significant decrease in the NMDA-induced excitation in animals that were chronically treated with oral MPH during adulthood (p=0.05, unpaired Student’s t-test, Fig. 61E), suggesting that MPH administration may induce local electrophysiological changes in striatal MSN rather than in PFC pyramidal neurons.
Figure 61: Effect of chronic methylphenidate treatment on spontaneous and NMDA-induced firing activities of prefrontal cortex pyramidal and striatal medium spiny neurons.

Chronic MPH treatment (5 mg/kg/day, oral) significantly increased the firing rates of spontaneously discharging prefrontal cortex pyramidal neurons (A), without altering burst discharges (B) nor the total number of active neurons (C), although tendencies to increase were observed. (D): In these neurons, chronic MPH exposure (4 mg/kg/day, i.p.) did not alter NMDA neurotransmission. (E): In silent striatal GABAergic medium spiny neurons, chronic MPH (5 mg/kg/day, oral) led to significantly decreased neuronal responses to locally applied NMDA. *P<0.05, **P<0.01 vs. vehicle, unpaired Student’s t-test (A, E). ns: non-significant, ***P<0.001 vs. respective 0 nA current, Neuman-Keuls after significant ANOVA (D).

When dopamine (10 nA) was locally applied on striatal medium spiny neurons, using microiontophoresis, animals exposed to chronic MPH treatment (5 mg/kg/day, orally and for 15 consecutive days) displayed decreased sensitivities of NMDA neurotransmission (Fig. 62). Indeed, as seen in Chapter II (Fig. 34), NMDA application (10 nA) on medium spiny neurons located in the striatum induced either a significant decrease (p<0.05) or a non-significant increase (p>0.05) in NMDA neurotransmission (Neuman-Keuls test after significant ANOVA, respectively Fig. 34A and B). The fact that some MSN display firing rate inhibition while other MSN display firing rate activation, following iontophoretic application of both dopamine and NMDA, can be explained by two different populations of MSN within the striatum. Indeed,
several studies suggest that dopamine D₁ receptor signalling enhances dendritic excitability and glutamatergic signalling, while D₂ receptor signalling exerts the opposite effect (Nishi et al., 2011; Surmeier et al., 2007). Moreover, such a segregation of MSN according to the expression of either D₁ or D₂ receptors directly parallels the role they play in the direct or indirect pathways to the basal ganglia, respectively (Gerfen et al., 2011; Macpherson et al., 2014; Reinius et al., 2015; Umemiya et al., 1997). To note: some MSN express both D₁ and D₂ dopamine receptors, but are confined within the nucleus accumbens (Bertran-Gonzalez et al., 2008; Nishi et al., 2011; Yager et al., 2015). Consistently with what was previously observed in Chapter II, control animals displayed identical responses (potentiation or dampening of NMDA) to iontophoretically applied dopamine, in conjunction with NMDA (Fig. 62A and B). However, in striatal medium spiny neurons, adult animals chronically exposed to MPH presented decreased sensitivities of the NMDA neurotransmission to locally applied dopamine, an effect not observed following vehicle exposure (controls).

Figure 62: Chronic exposure to methylphenidate induces dampening of striatal medium spiny neurons to locally applied dopamine.

In control animals, locally applied dopamine (10 nA) induces either dampening (A) or potentiation (B) of the responses of striatal GABAergic medium spiny neurons (MSN) to local NMDA applications (10 nA), as seen previously in Fig. 34. In comparison, animals treated chronically with MPH during adulthood (5 mg/kg/day, for 15 consecutive days) displayed decreased sensitivities (A, B) of the NMDA neurotransmission to locally applied dopamine. *P<0.05 vs. NMDA 10 nA, Neuman-Keuls after significant ANOVA.

Based upon such results and in order to further examine NMDA neurotransmission in the striatum, we then focused on NR₂B protein expression. In the prefrontal cortex and the hippocampus, adult MPH treatment induced small but non-significant NMDA₂B protein expression decreases, whilst it significantly decreased
NR$_{2B}$ protein expression in the striatum (Fig. 63). These combined results indicate that chronic MPH exposure during adulthood leads to decreased NMDA neurotransmission in striatal medium spiny neurons, in correlation with a decreased striatal NR$_{2B}$ expression.

Figure 63: Chronic methylphenidate exposure leads to decreased striatal NMDA 2B receptor expression.

Chronic exposure to MPH (4 mg/kg/day, intraperitoneally) significantly decreased NR$_{2B}$ protein expression in the striatum, but not in the prefrontal cortex, nor in the hippocampus. Bottom are displayed representative immunoblots with protein sizes in kilodaltons (kD). *P<0.05 vs. vehicle, unpaired Student’s t-test.

IV-4- Discussion

In this chapter, we have first demonstrated that dissolving up to 5 mg/kg of methylphenidate in a 10% sucrose solution (w/v) can be considered an efficient and stress-free method for oral drug delivery to rats. Such a protocol also closely reproduces the pharmacokinetic profiles in humans following methylphenidate intake (Calipari *et al.*, 2013). Indeed, we did not find any long-lasting increase in the blood sugar levels (glycaemia) of animals following chronic 2 ml/kg sucrose administrations (Fig. 53A). These observations confirm previous findings where efficient drug delivery was performed using the exact same protocol in Lister hooded rats (Atcha *et al.*, 2010). Here, we avoid the stress that can result from using gastric gavage techniques (Hoggatt
et al., 2010; Turner et al., 2011b; Turner et al., 2012). It also reduces the risk of the potentially life-threatening consequences of gavage (Germann et al., 1994). Nowadays, countless alternative techniques are used for voluntary oral drug dosing in rodents, many using sweet or palatable substances such as chocolate (Huang-Brown et al., 2002), peanut butter (Diogo et al., 2015; Taylor et al., 2016), cookie dough (Corbett et al., 2012), jelly (Flecknell et al., 1999), juice (Wheeler et al., 2007), milk (Matsumoto et al., 2014) or even honey (Kuster et al., 2012).

Intraperitoneal or oral methylphenidate, administered at 4-5 mg/kg/day during 15 consecutive days, did not influence glycaemic parameters after the last administration (Fig. 53B). Amphetamines are known to induce hypoglycaemia in mice (Moore et al., 1965) whilst inducing hyperglycaemia in humans (Asser et al., 2015). Local fluctuations in cerebral glucose metabolism within the prefrontal cortex, the limbic cortex and some subcortical structures such as the caudate or the thalamus, have been observed following either acute MPH (0.35 mg/kg) or D-amphetamine (0.15-0.25 mg/kg) injections (Ernst et al., 1997; Matochik et al., 1993), a result that might be explained by higher neuronal glucose demands upon activation (Gobel et al., 2013). In humans, consumption of another psychostimulant, caffeine, has been linked to systemic increases of glucose concentration (Olateju et al., 2015), although this was not observed in rats (Jarrar et al., 2014). It remains difficult to fully establish a linear relationship between local brain glucose metabolism and systemic blood glucose levels, although they may vary proportionally (Magnoni et al., 2012; Zetterling et al., 2011). Our results did not show any significant change in blood sugar levels following 15 days of chronic 5 mg/kg/day MPH administration. The long delay between the last MPH administration and the blood sugar level measurement could explain such results, although it is more than likely that MPH has no effect on glycaemia, regardless of the presence or absence of drug withdrawal.

Neither the chronic MPH treatment nor the intraperitoneal administration route were shown to alter the growth parameters of adult rats (Fig. 54A,C). However, we earlier found in another group of animals that the intraperitoneal route (administration of both vehicle and MPH) led to a slightly but significantly lower body weight gain (Fig. 54B). Here, we put forward the hypothesis that stress, caused by the injection, may induce such an effect. This partly corroborates previous findings, where a 13 week long
MPH treatment in young rats induced a delayed body weight gain (Komatsu *et al.*, 2012), as observed before on neonatal and juvenile rats (Pizzi *et al.*, 1986). However, these results were observed using very high doses of subcutaneous MPH, between 60 to 200 mg/kg/day. As a matter of fact, Pizzi *et al* observed a high mortality rate within the 200 mg/kg/day group, justifying the need to discontinue such a protocol (Pizzi *et al.*, 1987). Young developing rats may be more sensitive to the high doses of psychostimulant than adults and this may explain such differences. In our present study, MPH dosing remained low (4-5 mg/kg/day) compared to these studies (60-200 mg/kg/day). Studies in monkeys have revealed that chronic MPH (20-60 mg daily, for 1 year) does not affect growth or weight (Gill *et al.*, 2012). Gill *et al* used MPH doses of 6 +/- 1 mg/kg, which were chosen to mimic human serum levels following chronic MPH in children, resulting in MPH serum concentration of 11-13 ng/ml (Gill *et al.*, 2012; Swanson *et al.*, 2003). Studies on humans have shown that chronic MPH does not affect growth (Biederman *et al.*, 2010; Rapoport *et al.*, 2002), although this has been contested by others (Safer *et al.*, 1972; Swanson *et al.*, 2007; Zhang *et al.*, 2010a). Nevertheless, our study observed possible body weight gain velocity decreases following chronic MPH treatments using slightly supratherapeutic doses, in one group of animals.

Next, we observed that animals receiving chronic MPH do not respond to subsequent intravenous MPH challenges, which only induce firing rate and bursting activity decreases in VTA dopaminergic cells in naive and vehicle groups (Fig. 55-57). This can be interpreted as a possible drug tolerance, where the same dose of a drug has less effect following repeated administration (Sellers, 1978; Wang *et al.*, 2007b). In pharmacology, drug tolerance is also named desensitisation (Wolf *et al.*, 2010; Yamamoto *et al.*, 2013). We note with interest that MPH tolerance following chronic MPH exposure (using widely ranging doses, between 2 to 20 mg/kg) has been described before in rodents (Alam *et al.*, 2015; Emmett-Oglesby *et al.*, 1981; Jones *et al.*, 2014; Pearl *et al.*, 1976) and humans (Lakhan *et al.*, 2012; Patrick *et al.*, 2005; Ross *et al.*, 2002; Swanson *et al.*, 1999; Swanson, 2005). Indeed, these behavioural studies show that long-term MPH administration induces: 1/ tolerance on cognition, assessed by the water maze test, where animals swam for a longer period following chronic MPH exposure (2 mg/kg/day), while acute MPH improved cognition (2 mg/kg); 2/ locomotion tolerance, where acute MPH exposure (0.6-10 mg/kg) induces increases in horizontal locomotion, while repeated exposure (10 consecutive days) failed to do so;
tolerance to sweetened milk consumption, assessed by a return to initial baseline levels of milk consumption following chronic MPH exposure (15 mg/kg daily or every fourth day), while acute exposure resulted in a significant decrease in milk intake. In humans, tolerance to MPH can develop following repeated intake and is characterised by the inability of MPH to reduce ADHD symptoms (Ross et al., 2002; Swanson et al., 1999; Winsberg et al., 1987), if using the same daily dose, hence requiring a higher dosage regimen for the alleviation of the same symptoms. Tolerance to psychostimulants in ADHD children is seen in “most patients”, requiring dose adjustments (Pliszka et al., 2007; Yanofski, 2011). In non-human primates, chronic MPH exposure leads to decreased dopamine D2/D3 receptor availability, assessed by positron tomography (Gill et al., 2012). Moreover, in an animal model of ADHD (using young spontaneously hypertensive rats), chronic MPH led to decreased dopamine transporter density (Simchon et al., 2010). Methylphenidate tolerance could be the consequence of two mechanisms. First, the dopamine reuptake transporter may not be sensitive enough to MPH in order to induce enough extracellular dopamine concentration increases in the synaptic cleft to produce enough dopamine D2 receptor activation, due to downregulation of dopamine transporters. The second hypothesis is that MPH still efficiently blocks the dopamine transporter to the same degree as in control animals, but the dopamine D2 autoreceptor has become insensitive to rises in extracellular dopamine.

Here, we have shown that dopamine D2 receptors are not significantly affected by chronic MPH, as both vehicle and MPH-treated animals displayed similar sensitivity to the D2 receptor agonist quinpirole (20 µg/kg, Fig. 59). Interestingly, another study also found that neurons decreased their firing rates by 80% following quinpirole intravenous administration in both controls and MPH-treated rats (Shen et al., 2006), as observed in our present study (78%). These results corroborate the study of Volkow in 2012 where the authors found no change in dopamine D2 receptor binding following chronic MPH in ADHD adults (Volkow et al., 2012). Therefore, one hypothesis arises from these results. The pre-synaptic dopamine reuptake transporter (DAT) may be down-regulated, resulting in the inefficiency of MPH in inducing DAT blockade. Interestingly, some studies have witnessed DAT internalisation in mice following chronic (20 mg/kg, twice a day for 3 days) cocaine exposure (Peraile et al., 2010) as well as a DAT downregulation in patients following 3 months of 0.25-0.6 mg/kg/day of
MPH, assessed by positron emission tomography (Vles et al., 2003). Cocaine and MPH both block the DAT with similar in vivo affinities in humans (Volkow et al., 1999a). Vles in 2003, however, also found a post-synaptic downregulation of the dopamine receptor (Vles et al., 2003), which has not been observed in our study. Paradoxically, one imaging study found a DAT up-regulation in adult patients that were never previously medicated (Wang et al., 2013), whilst another study found a higher DAT availability following sub-chronic cocaine exposure in mice (Koff et al., 1994). DAT membrane levels are rapidly regulated by intracellular mechanisms to maintain adequate dopamine homeostasis in the synapse (Gulley et al., 2003). After acute psychostimulant use, such regulations are believed to arise more rapidly and transiently than after chronic administration, which leads to more persistent changes in the transporter expression (Zahniser et al., 2001). Our study also demonstrated that perfusion of striatal slices with 10 µM of MPH fails to significantly induce radio-labelled dopamine release in animals chronically treated with 4-5 mg/kg/day of MPH for 15 days, while 100 µM of MPH superfusion induces lower dopamine release than animals treated with vehicle (Fig. 60), as observed in another study using rats sub-chronically treated (4 consecutive days followed by a 2-week washout period) with 4 mg/kg of MPH (Sproson et al., 2001). Therefore, in MPH-treated animals, methylphenidate challenges fail to sufficiently block dopamine transporters in order to induce significant synaptic dopamine concentration rises to levels that are high enough to activate inhibitory dopamine D2 autoreceptors. This might be a consequence of a possible DAT down-regulation after chronic MPH exposure. Further studies are needed to examine whether chronic MPH exposure induce long-lasting consequences on DAT local expression, an effect that may require careful monitoring in patients.

When a large neuronal population was examined, chronic MPH did not lead to modification in the neuronal activity of dopamine neurons (Fig. 58). In the study by Choong et al, the authors found no significant changes in the neuronal excitability of VTA dopaminergic neurons after an acute 1 mg/kg MPH intraperitoneal administration (Choong et al., 2004). However, the same laboratory found increases in the excitability of midbrain dopamine neuron after 1 mg/kg/day of MPH for 3 weeks, whilst decreases in neuronal excitability were found following 30-60 days of washout (Shen et al., 2006). Chronic adolescent exposure to MPH (2 mg/kg/day for 7 days) led to increased neuronal firing of the midbrain dopamine neurons in adolescent rats, an effect lost after
2-3 weeks of washout (Brandon et al., 2003). However, chronic exposure to D-amphetamine at 1.5 mg/kg/day for 20 days in adolescent rats, followed by 20 days of washout, induced firing enhancement of VTA dopamine neurons, an effect that was not observed using a higher dose of 5 mg/kg/day (Labonte et al., 2012). The consequences of adolescent psychostimulant exposures will be further discussed in the next chapter (Chapter V).

In the prefrontal cortex, chronic MPH treatment did not significantly alter NMDA-induced firing rate activation in a large population of neurons (Fig. 61D). These results that are different to what we have found following acute MPH and D-amph exposures (3 mg/kg, Chapter II), may indicate that chronic MPH exposure is not likely to induce persistent changes in the glutamatergic neurotransmission of cortical pyramidal neurons. The PFC is necessary to induce behavioural sensitisation following chronic MPH (Lee et al., 2008). However, we have found that chronic methylphenidate increases the firing rate of PFC pyramidal neurons (Fig. 61A). One study on freely behaving animals, using microarray electrodes, revealed that both acute and chronic methylphenidate (2.5 mg/kg, for 5 consecutive days, followed by a 3-day washout period) induce increases of the PFC pyramidal neuron firing rate in the majority of all neurons tested, but the authors did not characterise the underlying mechanisms of such increases (Salek et al., 2012). We put forward the hypothesis that chronic MPH treatment increases tonic input of PFC glutamate neurons onto midbrain dopamine neurons. In 2015, Schmitz et al observed higher glutamate levels as well as decreased glutamate uptake capacity in the PFC of juvenile rats after 30 days of daily 2 mg/kg MPH (Schmitz et al., 2015). It will be vital to assess the possible impacts of such glutamate neurotransmission, as excessive glutamate in the synaptic cleft leads to excitotoxicity (Ha et al., 2006; Han et al., 1997; Kritis et al., 2015; Tirosh et al., 2000), which can also be a result of excessive NMDA receptor stimulation (Schubert et al., 2001). In our model, we did not observe any alteration of the NMDA-induced firing activity of pyramidal cells after chronic MPH. One can assume that the initial glutamatergic plasticity remains temporary, because of prolonged activation of NMDA receptors, but is crucial for therapeutical effects. In juvenile rats, chronic MPH administration (1 mg/kg/day for 3 weeks, 5 days per week) increases hyperpolarising currents in cortical pyramidal neurons and decreases EPSC (excitatory post synaptic current) frequencies (Urban et al., 2012). Such a depression of cortical activity within
the PFC of juvenile rats is not observed in adult animals in the present study (Fig. 61). Next, we observed a significant reduction in NMDA$_{2B}$ protein receptor expression in the striatum (Fig. 63) and a parallel decreased responsiveness of striatal medium spiny neurons to local NMDA delivery (Fig. 61E), which strengthens our observations. These results on chronic MPH intake are in total opposition to what we found using acute MPH exposure (Fig. 35, 37). A previous observation, using acute MPH (1 mg/kg), has shown decreased NR$_{2B}$ expression in the PFC (Urban et al., 2013b).

Our results which show that chronic adult exposure to MPH tends to induce a dampening of the sensitivity of striatal medium spiny neurons (MSN) to locally applied dopamine (Fig. 62) are in line with previous findings. Indeed, one study in mice observed increased MSN dendritic spine formation following chronic psychostimulant exposure (cocaine, 30 mg/kg, intraperitoneally, over 4 weeks) in neurons located in the nucleus accumbens and which specifically express dopamine D$_1$ and D$_2$ receptors (Kim et al., 2009). These increases in spine densities are believed to trigger long-term potentiation (Matsuzaki et al., 2004). Another study witnessed behavioural sensitisation or tolerance (in a 1:1 ratio) to chronic MPH (0.6-10 mg/kg for 5 days), closely associated with electrophysiological sensitisation or tolerance in MSN of the nucleus accumbens (Claussen et al., 2014a). Therefore, chronic methylphenidate exposure may reduce striatal plasticity and might not be without long-term consequences. As a matter of fact, chronic MPH exposure (6 mg/kg, twice a day for 28 days, orally) significantly decreased dopamine D$_2$ receptor availability in the striatum (Caprioli et al., 2015). Similarly, chronic oral methylphenidate intake (2 mg/kg/day) for 2 months significantly decreased striatal dopamine D$_2$ receptor availability (Thanos et al., 2007). Our results need to be studied further in order to determine the role of D$_1$- or D$_2$-like receptors after chronic exposure to methylphenidate.

To conclude, we have shown here that chronic intraperitoneal treatments during adulthood can alter body growth parameters in some animals. Voluntary oral MPH administration can be easily performed using sucrose solutions, as suggested in previous studies. Chronic MPH treatment probably induces dopamine reuptake transporter down-regulation, possibly by internalisation, assessed by dopamine neurons insensitivity to intravenous MPH challenges, but may not affect post-synaptic dopamine D$_2$ inhibitory autoreceptors. Besides, striatal tissues from MPH-treated animals induce significantly
lower dopamine release using the same concentration of MPH compared to control tissues. The global VTA dopamine neuron population is not significantly affected by chronic treatment, although some neurons have higher burst activities following MPH and D2 receptor antagonism in MPH-treated animals than the respective control animals (Fig. 58), suggesting MPH-induced neuronal adaptations. Finally, in vivo NMDA-induced neuronal activation of striatal MSN is reduced following chronic MPH, in parallel with significant decreases of striatal NMDA2B protein expression, which can be the visible result of the on-going side effects on neuronal plasticity.
Chapter V – The long-term consequences of methylphenidate treatment during adolescence on adult brain functions.

V-1- Introduction

ADHD occurs mainly during childhood and adolescence (Adesman, 2001; Hurtig et al., 2007; Wilens et al., 2010) but can persist throughout the entire adult lifespan in a widely ranged proportion of patients (ten to sixty percent), depending on the different cohorts, if previously diagnosed with childhood ADHD (Gentile et al., 2006; Kessler et al., 2005; Pehlivandis, 2012). Evidence for long-term side effects is limited. While some studies reported risks and/or side effects such as insomnia, tics, erythema, dyskinesia, sleep disturbance, abdominal pain, headache and appetite loss for ADHD patients under chronic psychostimulant therapy (Ahmann et al., 1993; Efron et al., 1997; Greenhill et al., 2002; Lerner et al., 2008; Martinez-Raga et al., 2013; Rappley, 1997; Rodrigues et al., 2008; Senecky et al., 2002), other studies reported no serious side effects to such treatments (Gadow et al., 1999). However, ADHD drugs, at clinically relevant doses, are known to improve academic performance in children and adolescents (Chacko et al., 2005; Evans et al., 1991; Greenhill et al., 2002; Hechtman et al., 2004; Najib, 2009; Pelham et al., 1993; Powers et al., 2008; Swanson et al., 2004), therefore outweighing the side effects, if correctly dosed (Manos, 2008; Martinez-Raga et al., 2013). In rodents, adolescent methylphenidate treatment is associated with altered behavioural responses in adulthood (Bolanos et al., 2003), impaired reproductive axis (Chatterjee-Chakrabarty et al., 2005; FazeliPour et al., 2012), impaired learning (Rowan et al., 2015) and increased hippocampal BDNF (brain-derived neurotrophic factor) mRNA levels (Simchon-Tenenbaum et al., 2015), a crucial protein for plasticity, memory, synapse establishment/maintenance and neuronal regeneration (Bekinschtein et al., 2008; Benraiss et al., 2001; Huang et al., 2001; Pencea et al., 2001; Yamada et al., 2003; Zigova et al., 1998). Another study found that chronic treatment with oral MPH (2 mg/kg, twice a day) leads to increased impulsiveness in adulthood (Pardey et al., 2012). In parallel, chronic adolescent amphetamine exposure at high doses (0.5-5
mg/kg/day) induced increases in the risk-taking behaviour of adult rats and increased firing activities of dopamine and serotonin neurons (Labonte et al., 2012). Interestingly, serotonin neurotransmission, alone or with dopamine neurotransmission, has been linked to impulsivity in humans (Dalley et al., 2012; Pattij et al., 2008; Seo et al., 2008; Stein et al., 1993; Walderhaug et al., 2010; Worbe et al., 2014). In rodents, adolescent exposure to stimulants may lead to drug-seeking behaviour in adulthood (Brandon et al., 2001; Carlezon et al., 2004; Crawford et al., 2011; Jordan et al., 2014), although this was not seen in rhesus monkeys (Gill et al., 2012; Martelle et al., 2013) or humans (Barkley et al., 2003; Wilens et al., 2003). However, it may be too early to draw conclusions on such matters. Adolescent exposure to drugs may not be without risk, knowing that the brain still develops up to 24 years of age (Andersen, 2003).

In this fifth chapter, we will examine the impact of chronic adolescent methylphenidate treatment on growth, neuronal activities and glutamate neurotransmission, in an attempt to characterise any possible long-term consequences of such treatments. A focus will also be put on the link between depression-like behaviours and the electrical activities of dorsal raphe nucleus serotonin neurons. Finally, assessments of dopaminergic neurotransmission, combined with dopamine autoreceptor sensitivity as well as behavioural sensitivity to D-amphetamine, will be assessed in rats that received adolescent exposure to methylphenidate.

V-2- Material and Methods

V-2-A- Subjects and groups

Fifty-two male Sprague-Dawley rats were purchased from Charles River, UK. Animals were housed in groups of 2-4 per cage, maintained at 20-22°C with humidity rates above 40% under a 12:12 L/D cycle with lights ON at 07h00. Food and water were provided ad libitum, except in the sucrose preference test. Animals were allowed a 3-day acclimatisation period after delivery. All experiments were performed during the light phase and with permission from the UK Home Office and De Montfort University Ethics Committee under the Project Licence 60/4333 and with the Personal Licence 60/13750.
Adolescent animals weighing 70-90 grams (Levin et al., 2007; McCutcheon et al., 2009; Milstein et al., 2013; Morris et al., 2010; Sengupta, 2013) were used at the beginning of each treatment. Animals were randomly assigned to one of the following groups (Fig. 64):

- Animals voluntarily drinking 5 mg/kg/day of MPH (or vehicle alone) in 2 ml/kg of a sucrose 10% (w/v) solution, orally and for 15 consecutive days, followed by a 28-day washout period. n=42.

- Animals receiving 4 mg/kg/day of MPH (or vehicle alone) in 1.2 ml/kg of saline, intraperitoneally and for 15 consecutive days, followed by a 28-day washout period. n=10.

Figure 64: Experimental protocol for chronic methylphenidate treatment during adolescence.
Following 3 days of acclimatisation, young rats weighing 70-90 grams were given MPH for 15 consecutive days, followed by a 28-day washout period. Administration routes were either intraperitoneal (4 mg/kg/day) or oral (5 mg/kg/day). n values represent the number of animals included in each group.

V-2-B- Sucrose preference test

After at least 20 days following the last MPH administration, some animals were subjected to a sucrose preference test (Fig. 65), adapted from previous published protocols (Li et al., 2015a; Mateus-Pinheiro et al., 2014; Mileva et al., 2015; Overstreet, 2012; Tang et al., 2015). Briefly, rats were tested for sucrose preference over a five day period using a two-bottle choice test. Animals had ad libitum access to food and water throughout the experiment. On the first day, rats were housed singly and accustomed to drinking from two water bottles. On the following three days, rats were trained on the sucrose preference test, in which one out of the two water bottles was
replaced by a bottle containing a 2% sucrose solution (w/v). Rats were allowed to drink freely from both bottles during the 12-hour nocturnal phase (7.30 PM until 7.30 AM). During the light phase, both bottles were replaced by bottles containing water only. The bottles were weighed and refilled each day at the same time in the morning. The positions of the bottles were switched daily to avoid position preferences, which has been observed in mice (Bachmanov et al., 2002). After removing the bottles at the end of the last habituation day, rats were subjected to a preference test during 1 hour. Sucrose preference was determined after the last trial, on the fifth day, by the quotient of sucrose consumption over 12 hours to the total liquid intake, consisting of both water and sucrose intakes. A sucrose preference score lower than 65% was considered a depressive-like phenotype (Briones et al., 2012; Couch et al., 2013; Strekalova et al., 2004; Willner, 1997).

Figure 65: Sucrose preference test protocol.
Animals were group-housed before being singly housed on the first day of the sucrose preference test. Animals had *ad libitum* access to food and water throughout the experiment. During the dark phase and starting on the second day (Day 2), animals could choose between two drinking bottles, containing either tap water (blue) or a 2% sucrose solution (orange). Sucrose preference was calculated from results obtained during a 1-hour test period, performed on the fifth day and during the light phase. Animals were kept in polypropylene cages (black rectangles) measuring 56x38x17 cm, whether singly- or group-housed.
V-2-C - In vivo extracellular single unit electrophysiology

Please refer to paragraph III-2-B. In this chapter, the number of putative dorsal raphe nucleus (DRN) serotonin neurons per track was recorded by recording the total number of active serotonin neurons encountered during one electrode descent within the DRN, at the following coordinates (Fig. 66): anteroposterior -7.5 to -8 mm to Bregma, lateral 0 mm, dorsoventral 5-7 mm below cortical surface. Here, only putative serotonin neurons presenting a triphasic extracellular waveform and a regular firing activity (1-40 spikes per 10 seconds) were recorded (Oosterhof et al., 2015; Vandermaelen et al., 1983). Bursting of DRN serotonin neurons was calculated with the following criteria: at least two bursts occurring within 20 ms or less and followed by a silence period of at least 40 ms. These parameters were adapted from previous electrophysiological investigations (Hajos et al., 1995; Labonte et al., 2012; Manta et al., 2009; Rouchet et al., 2008). To further confirm the specific recording of serotonergic neurons only, systemic exposure to 8-OH-DPAT (5-Hydroxy-N,N-dipropyl-2-aminotetralin) was performed at the end of some recordings, which induced neuronal silencing that could be reversed by WAY-100135 administration.

Figure 66: Dorsal raphe nucleus location.
The shaded area delimits the location of the dorsal raphe nucleus (DRN), where serotonin neurons are found. Scales represent distances (in mm) from the midline and the surface of the brain. DRD dorsal raphe nucleus, dorsal part. DRV dorsal raphe nucleus, ventral part. Coronal slices adapted from Paxinos and Watson (1997).
V-3- Results

Within this chapter, 115 putative serotonergic neurons were recorded in the DRN and 179 putative dopaminergic neurons were recorded within the midbrain, from 52 animals.

V-3-A- Adolescent treatment with methylphenidate does not induce growth deficits

The impact of a chronic methylphenidate treatment during adolescence on growth parameters was investigated. We noted with interest that MPH, administered orally at 2.5 mg/kg twice a day and for 15 days, did not induce any body weight gain deficiency during the treatment period (D18, Fig. 67A). After the 28-day washout period, no differences were observed between MPH-treated animals and vehicle-treated animals (D46, Fig. 67A). Similarly, a dosing schedule of 5 mg/kg under the same protocol failed to produce differences in body weight gain. MPH intraperitoneal administration, at 2 mg/kg for 15 days and twice a day, did not induce any significant change in body weight gain (Fig. 67B). Here, we show that adolescent MPH treatments in the range of 4-5 mg/kg/day do not induce weight gain deficiency.
Figure 67: Adolescent exposure to chronic methylphenidate does not induce body growth delay.

(A, B): Body weight gain was not significantly affected by treatment with MPH. D values indicate experimental day numbers.

V-3-B- Adolescent MPH treatment and depressive-like phenotypes during adulthood

Five days before the end of the washout period (D41), animals were assessed for a depression-like behaviour using the sucrose preference test. Using this protocol, we found that animals successfully learnt to discriminate water from sucrose. Indeed, the transition from the first day to the second day is marked by an increase in liquid consumption in 11 out of 12 animals (92%, Fig. 68A). Interestingly, after this initial increase in sucrose consumption, animals tend to decrease their sucrose consumption on the third day to finally maintain this level of consumption (Fig. 68A). However, for the sucrose preference test, we found that 25% of all animals display a sucrose preference below 65% in both vehicle and MPH-treated animals (respectively 1/4 and 2/8 animals, Fig. 68B). MPH-treated animals and vehicle-treated animals did not differ in their sucrose preferences (Fig. 68C). The low scores, observed in 25% of all animals tested, were not due to individual decreases in total volume intake, as both groups displayed similar liquid intake patterns (Fig. 68D). Although the 65% threshold appears arbitrary, it has been proven accurate in discriminating depression-like
phenotypes (Briones et al., 2012; Couch et al., 2013; Strekalova et al., 2004; Willner, 1997). Therefore, MPH treatment did not induce any long-term depressive traits in rats. This trait was found in 25% of all animals studied (1/4 in the vehicle group, 2/8 in MPH-treated animals for a global 3/12 animals). This puzzling result was further examined. To our surprise, in naive animals (n=10), the same frequency of depression-like phenotypes were observed in 3 of these animals (30%, Fig. 68E). Therefore, such behavioural characteristics, as assessed in our study by the sucrose preference test, might appear “spontaneously” in naive animals maintained under standard laboratory conditions. This result could be partly due to the fact that animals were switched from being group-housed to single-housed or that some animals naturally present such traits when maintained under artificial conditions. Sucrose preference tests could be routinely performed in laboratories to reveal naturally-occurring depression-like phenotypes in rodents.
Figure 68: Chronic adolescent exposure to methylphenidate does not induce depression-like behaviour at adulthood.

(A): Control animals and MPH-treated animals successfully learned to discriminate water from sucrose, assessed by a drastic increase of volume intake from day 1 to day 2, corresponding to the transition between water and sucrose. (B): On the test day, animals from both groups showed similar sucrose preference scores. Both groups (1 animal out of 4 in controls, 2 animals out of 8 in MPH-treated) displayed similar levels of depression-like behaviour, assessed by a sucrose preference score below 65% (dashed blue line, see Briones et al., 2012). Note that one control animal displayed an anhedonic-like behaviour after the third experimental day, by showing practically no interest in sucrose. (C): Adolescent exposure to MPH (5 mg/kg/day, for 15 days, followed by a 28-day washout period) does not induce anhedonic-like behaviour. (D): Total volume intakes (water or sucrose) were identical between the two groups during the entire experimental protocol. (E): To confirm if any anhedonic-like behaviour was naturally occurring in our batch of animals, 10 naive animals were also scored for sucrose preference. Surprisingly, on the test day, we observed that 30% of all animals (3/10) could be considered as displaying depression-like behaviour (score below 65%), confirming our results in B.
V-3-C- Adolescent MPH leads to long-term adaptations in serotonin neurons in adulthood

After the recovery period, serotonin neurons from the dorsal raphe nucleus (DRN) were examined in vivo. MPH, administered orally at 2.5 mg/kg twice a day for 15 consecutive days during adolescence, did not change the global firing activity of DRN serotonin neurons (Fig. 69A) or the total number of spontaneously active neurons within the DRN (Fig. 69C) found during adulthood, but significantly increased (p<0.05, Student’s t-test) burst discharges in these neurons by 5 fold (Fig. 69B). Indeed, in the MPH-treated group, 26% of all neurons (13/50) displayed bursting activities whereas only 12% of all neurons in the control group (8/65) did so. These results suggest that VTA dopamine neurons shift their firing rates from regular to bursting activities, without altering the global firing rate frequency. No correlation between sucrose preference results and the electrical activities of these neurons could be observed (Fig. 69D-F). In control animals (n=3, vehicles), we did not observe any correlation either. To be noted: average firing rates, burst activities and cells per track were assessed in at least 7 neurons per animal. Here, we show that low sucrose preference may be linked to high burst activities of serotonergic neurons.
Figure 69: Responses of dorsal raphe nucleus serotonin neurons to chronic methylphenidate in correlation to anhedonia.

(A, B, C): Chronic MPH treatment during adolescence increased the burst activities of dorsal raphe nucleus (DRN) serotonin neurons at adulthood, without significantly changing the firing rates nor the total number of active neurons per electrode descent, suggesting a shift of firing rate activity from regular to bursting activities. (D, E, F): No correlation between the electrical activities of DRN neurons and sucrose preference scores could be found. In sections D, E and F, vehicle animals (n=3) were excluded due to a very low bursting activity in these animals and lack of samples. *P<0.05 vs. vehicle, unpaired Student’s t-test. r^2 values indicate the correlation coefficient.

V-3-D- Adolescent MPH leads to long-term adaptations in midbrain dopamine neurons in adulthood

Compared to controls, animals that received adolescent MPH exposure (5 mg/kg/day for 15 days) displayed significantly higher (p<0.04) firing activities of ventral tegmental area (VTA) dopaminergic neurons (Fig. 70A). Burst activities were not significantly affected by chronic MPH treatment (Fig. 70B). The total number of spontaneously discharging midbrain dopamine neurons (firing rate > 4 spikes per 10 seconds) was significantly increased (p<0.05) following chronic adolescence exposure to MPH (Fig. 70C).
Figure 70: Long-term neuronal adaptations of midbrain dopamine neurons following adolescent exposure to methylphenidate.

(A): Chronic administrations of MPH (5 mg/kg/day) during adolescence significantly increased (p<0.04) firing activities of VTA dopaminergic neurons in adulthood. (B): No change in burst activity was observed following such chronic treatment. (C): Chronic exposure to MPH led to significantly greater number of active dopamine neurons found per electrode descent. *P<0.05 vs. vehicle, unpaired Student’s t-test.

V-3-E- Adolescent MPH induces partial dopamine D2 receptor desensitisation in adulthood

In both controls and MPH-treated animals in adolescence, quinpirole intravenous administration (20 µg/kg) led to strong and reversible firing rate reductions of VTA dopamine neurons (F(2,28)=37.18, p<0.0001, Fig. 71A). Moreover, animals treated with MPH during adolescence displayed significantly lower sensitivities (% of firing rate decrease) to the high dose (20 µg/kg) of the dopamine D2 receptor agonist quinpirole (p<0.05, unpaired Student’s t-test, , Fig. 71B). Indeed, this dose of quinpirole completely stopped the firing activity of 5 out of 9 neurons from the control group, but in none out of 7 neurons in the MPH group. This prompted us to carry out a more thorough study on dopamine D2 autoreceptor sensitivity, within a large range of doses with another D2 receptor agonist: apomorphine. When apomorphine was intravenously injected, animals previously exposed to MPH during adolescence (5 mg/kg/day for 15 days followed by 28 days of washout) displayed a significant shift in their sensitivity to the D2 agonist (F(1,11)=5.38 p<0.05), as seen in Fig. 71C. Moreover, in such animals, the sensitivity of dopamine D2 autoreceptor to each apomorphine dose (assessed as the percentage of the decrease in the firing rate), administered with progressive 10 µg/kg increments and up to a cumulative dose of 50 µg/kg, was significantly reduced (F(1,8)=12.57, p<0.01) when compared to control animals (Fig. 71D).
Figure 71: Adolescent exposure to methylphenidate partially induces dopamine D2 autoreceptor desensitisation in adulthood.

(A): Intravenous challenges with quinpirole (20 µg/kg) significantly reduced the firing activities of VTA dopamine neurons in both control and MPH-treated animals \((F_{(2,28)}=37.18, p<0.0001) \). Etioclpride (0.2 mg/kg) successfully recovered such MPH-induced firing rate reduction in 15 out of 16 neurons. ***P<0.01 vs. saline, Bonferroni after significant repeated measures two-way ANOVA. (B): Methylphenidate-treated animals during adolescence presented a significantly lower (p<0.05, unpaired Student’s t-test) sensitivity to quinpirole challenges in adulthood. (C): Similarly, compared to control animals, MPH-treated animals during adolescence displayed significantly lower firing rate reductions following progressive apomorphine (another D2 receptor agonist) challenges \(F_{(1.11)}=5.38 \) p<0.05, administered in a dose-response manner and with progressive 10 µg/kg increments. *P<0.05, **P<0.01 vs. respective 0 µg/kg apomorphine, Bonferroni after significant repeated measures two-way ANOVA. (D): Compared to controls, animals previously exposed to chronic MPH in adolescence had significantly lower sensitivities to dopamine D2 receptor agonism \(F_{(1.8)}=12.57, p<0.01 \). *P<0.05, **P<0.01 vs. controls, Bonferroni after significant repeated measures two-way ANOVA.

Intravenous methylphenidate challenge (2 mg/kg) significantly decreased midbrain dopamine neuron firing rates in all groups by 50-65% (Fig. 72A,C,D), an effect reversed by injection of the dopamine D2 receptor antagonist eticlopride (0.2 mg/kg). In the vast majority of neurons (78%, 29 neurons out of 37) from all groups, the combination...
of both dopamine transporter blockade (induced by MPH) and D₂ receptor antagonism (eticlopride) led to significantly higher firing rates, compared to baseline levels (Fig. 72A,C,D), as observed in Chapter III on naive animals (Fig. 43). Similar results were observed for burst activities in 18/37 neurons (Fig. 72B,D).

Figure 72: Adolescent exposure to methylphenidate does not induce tolerance to methylphenidate challenges in adulthood.

Intravenous challenges with MPH (2 mg/kg) significantly decreased the firing rates (A) and burst activities (B) of VTA dopamine neurons in MPH-treated animals. In the control group (vehicle), MPH induced significant firing rate reductions, but did not induce burst activity alterations. (C, D): Representative firing histogram examples of recordings performed in control and MPH-treated animals (intraperitoneal), respectively. Boxed are shown typical action potential waveforms. Please note that in 29 animals out of 37 (78%), reversal of MPH-induced firing rate reduction by eticlopride (0.2 mg/kg) led to significantly higher firing rates than under baseline conditions (A, C, D). ns: non-significant, *P<0.05, **P<0.01, ***P<0.001 vs. respective baselines, Newman–Keuls after significant ANOVA.

V-3-F: Adolescent MPH does not modify NMDAR₂B protein expression in the PFC at adulthood but induces behavioural sensitisation to D-amphetamine

Neither 2.5-5 mg/kg of oral MPH, nor 2 mg/kg of i.p. MPH during adolescent (once or twice a day, leading to 4-5 mg/kg/day) had a long-term impact on NMDA receptor 2B protein expression in adulthood in the prefrontal cortex (Fig. 73), confirming our previous results with chronic adult MPH treatments (Fig. 63).
Figure 73: Adolescent exposure to methylphenidate does not increase prefrontal cortex NR2B protein expression.
Chronic adolescent exposure with different regimens of MPH did not significantly alter NMDA receptor 2B protein expression in the prefrontal cortex.

When 3 mg/kg of D-amphetamine was administered intraperitoneally to naive adult rats, we observed a significant increase of rearing events (Fig. 36C2). Next, using a lower dose of D-amph (1 mg/kg), we observed that animals previously treated with MPH during adolescence (2.5 mg/kg/day, orally) displayed significantly more frequent rearing events during the first 30 minutes of observation (p<0.05, unpaired Student’s t-test) compared to animals that had received vehicle only during their adolescence (Fig. 74). Peak rearing events activity was observed during the first 30 minutes of observation, which was followed by progressive time-dependent decreases of such events, in both groups. Such results indicate a possible immediate behavioural cross-sensitisation between MPH and D-amphetamine, which does not appear to persist in time. Besides, such a result can also indicate a possible risk of multiple drug abuse for previously-treated ADHD patients.
1 mg/kg D-amphetamine challenge (intraperitoneal)

Figure 74: Adolescent exposure to methylphenidate induces behavioural sensitisation to later D-amphetamine challenge.
During the first 30 minutes of observation following D-amphetamine (1 mg/kg, intraperitoneally) challenges, MPH-treated animals displayed significantly greater rearing events than control animals. *P<0.05 vs. vehicles, Bonferroni after significant repeated measures two-way ANOVA.

V-4- Discussion

Our results, showing that adolescent exposure to MPH does not induce growth velocity deficits (Fig. 67), corroborates previous observations (Achat-Mendes et al., 2003; Pizzi et al., 1987; Spencer et al., 2006). Contradictory results were also reported. Indeed, while some studies have reported growth alterations throughout the treatment period (Germinario et al., 2013; Poulton et al., 2003; Poulton et al., 2013; Powell et al., 2015; Safer et al., 1972), others confirmed growth or height rebounds after MPH withdrawal in rodents and humans (Klein et al., 1988; Pizzi et al., 1986; Renes et al., 2012; Safer et al., 1975). However, in one group of sub-adult rats investigated in Chapter IV (Fig. 54B), a slight weight reduction was observed following intraperitoneal administrations, but this effect could not be replicated in another batch of animals investigated later on. These findings suggest that stimulant medications may induce growth deficits in ADHD patients under stimulant pharmacotherapy, but such effects may only occur occasionally rather than systematically. Whether these consequences have any significant clinical implications, such as final stature and posture, is a question that requires further research (Poulton, 2005).

In adult rodents, high methylphenidate dosing (20 mg/kg, i.p., once a day for 14 days) induces depression and anxiety, assessed by increased immobility and a decreased latency to become immobile in the forced swim test (Brookshire et al., 2012;
Motaghinejad et al., 2015). Paradoxically, in humans, high MPH dosing has off-label use in the treatment of depression. Indeed, some depressive patients improve following MPH administration (Ayache et al., 2001; Hardy, 2009; Kerr et al., 2012; Lavretsky et al., 2015; Patkar et al., 2006; Rozans et al., 2002). Patients found in palliative care or in geriatrics appear to respond well to MPH therapy (with dosages varying from 2.5 to 40 mg/day), which efficiently reduces symptoms of depression. Consistent with these findings, our study supports the assumption that adolescent MPH administration does not induce more depression-like behaviour in adulthood (Fig. 68B,C) than what is generally found in the background population (Fig. 68E). In our sucrose preference test, the proportion of depression-like behaviour was high in both cohorts (25-30%, Fig. 68). One can wonder if this could be attributed to the transition from social to individual housing (inducing social isolation), which was necessary for assessing individual criteria for depression. Parallel observations in non-human monkeys and mice found isolation to be an important factor in inducing this type of behaviour (Fischer et al., 2012; Hennessy et al., 2014; Li et al., 2013; O'Keefe et al., 2014). In rats, similar conclusions were drawn (Djordjevic et al., 2012; Jahng et al., 2012; Zanier-Gomes et al., 2015). However, whether low sucrose preference scores directly reflect depression-like behaviours remains an open question and one could assume that such a test rather measures vulnerability to depression. It is important to note that in humans, social isolation, following heart failure, stroke or coronary disease, leads to poorer recoveries (Friedmann et al., 2006; O'Keefe et al., 2014; Wang et al., 2006).

Our results, showing that some control animals display sucrose preferences below 65%, stand in contrast to recent investigations using the same protocol and strain of animals. Indeed, Boyko in 2015 and Wang in 2014 found that all control rats (naive, n=30) showed sucrose preference above 70% (Boyko et al., 2015; Wang et al., 2014). However, such rates are easily explained in both studies by the housing conditions, where rats were group-housed until the 1 hour test. In our model, rats were individually-housed at the start of the experiment, on day 1, for acclimatisation to the test conditions. Therefore, initial social isolation may have contributed to the induction of depressive-like traits, although adolescent MPH treatment, given under the exact same conditions, did not affect depression-like rates in rats. However, adolescent exposure to MPH (2 mg/kg, i.p., twice a day for 16 days) was found to significantly decrease the sucrose preference of adult rats for solutions ranging from 0.1 to 0.5% but not with a 1%
sucrose concentration (Bolanos et al., 2003), while we used a 2% concentration (Fig. 68B,C). The study by Bolaños also highlights the fact that there is no difference in total liquid intake between control and MPH-treated rats, as seen in our results (Fig. 68D). One very interesting study, using slightly different experimental protocols, has reported similar results to ours. Indeed, adolescent chronic MPH administration (2-5 mg/kg, once daily, i.p., 10 days) led to unaltered sucrose preference (using 0.125% sucrose solution) in adulthood in singly-housed rats. However, the authors also witnessed sucrose preferences, in controls and MPH-treated animals, ranging between 59 and 72% (Crawford et al., 2013), consistent with our own observations. In naive wild type mice, several sucrose contents in the test solutions (0.5, 1 and 2% w/v) resulted in proportionate (45, 60 and 75%, respectively) sucrose preference scores (Couceyro et al., 2005). Taken together, these observations suggest that adolescent MPH exposure does not induce subsequent depression-like behaviour in adulthood in rodents. Moreover, the 65% sucrose preference depression threshold needs to be further investigated, or even reassessed, as it may not accurately reflect the phenotypes of these traits in rodents kept under standard laboratory conditions.

When dorsal raphe nucleus (DRN) serotonin neurons were recorded during adulthood, we did not see any change in the firing activity or in the total number of active neurons per track following chronic adolescent MPH treatment (Fig. 69A,C), although a small but non-significant (p<0.1) firing rate increase was observed. However, an adolescent exposure to MPH leads to increased burst activities of DRN serotonin neurons (p<0.01 vs vehicle, unpaired Student’s t-test, Fig. 69B). Each bursting activity results in a greater efficiency of neurotransmitter release at terminals (Overton et al., 1997; Paladini et al., 2003; Zhang et al., 2011). This indicates that some serotonin neurons in the DRN may have adapted their firing mode following chronic MPH, by switching from single firing activities to bursting activities, without increasing their firing rates, an effect that persists in time. Baseline burst levels in the control group (around 3%), was similar to previous findings (Manta et al., 2009). A recent study found that adolescent exposure to 1.5 mg/kg of daily D-amphetamine for 21 days, followed by 20 days of washout, significantly increases the firing rate of both DRN serotonin and VTA dopamine neurons, without affecting burst activities (Labonte et al., 2012). This study also shows that higher doses of D-amphetamine (5 mg/kg) do not lead to any long-lasting change in the firing activities of both types of neurons. Although
DRN serotonin neurons have long been considered as incapable of producing burst discharges, mainly due to their slow firing mode (5-25 spikes per 10 seconds), evidence for a large bursting neuronal population now exists (Allers et al., 2003; Gartside et al., 2000; Hajos et al., 1995; Jennings, 2013; Schweimer et al., 2010). One of the physiological significances of burst activity from DRN serotonin neurons may be to mediate the anticipation of reward, but not punishment. Indeed, during the anticipation period of a sucrose reward, mice displayed strong burst activity of DRN serotonin neurons, an effect not seen during the rewarding event itself (Li et al., 2016). Odour-related reward has also been found to trigger bursting discharges of these neurons (Cohen et al., 2015). Besides, bursting DRN serotonin neurons induce high serotonin release in the forebrain, including the prefrontal cortex (Gartside et al., 2000; Hajos et al., 2007; Hajos et al., 1996).

In our experiments, there was no correlation between sucrose preference and the electrical parameters of DRN serotonin neurons (Fig. 69D-F). A recent study on head-restrained and water-deprived mice observed bursting activities of such neurons after rewarding (water) but not punishing (puff of air) events (Cohen et al., 2015). Indeed, burst discharges were observed in the anticipation of rewarding events, whilst punishing events did not induce such effects. Moreover, clues (in the form of odours) to subsequent rewarding or punishing events strongly induce bursting activities of DRN serotonin neurons. Finally, all the neurons recorded in this study displayed firing rate modifications during these behavioural tasks (Cohen et al., 2015). Our results may indicate that “anhedonic” rats displayed higher burst activities of DRN serotonin neurons compared to non-anhedonic rats (Fig. 69E). Anhedonic-like behaviour, measured in our methods through the sucrose preference test, are the typical symptoms of endogenous and non-endogenous depression (Li et al., 2015b; Liu et al., 2012b; Ng et al., 2014; Yee et al., 2015). Anhedonia can reflect a state of stress, occurring at the same frequency in both MPH-treated and control animals (Fig. 68). Mild stress has been linked to decreased sucrose preferences in rodents, an effect alleviated by chronic antidepressant therapies (Gupta et al., 2014; Liang et al., 2015; Tianzhu et al., 2014; Willner et al., 1987). More studies will be needed to characterise the exact relationship between depression-like traits in rodents and the electrical activities of serotonergic neurons. Nevertheless, adolescent MPH treatment does not seem to induce long-lasting depressive phenotypes in rodents in adulthood.
In adulthood, in the ventral tegmental area (VTA), dopaminergic neurons increased their firing rates following chronic adolescent MPH exposure (Fig. 70A). The total number of spontaneously active dopamine neurons in the VTA was greater in MPH-treated animals (Fig. 70C). These results are in line with previous findings, where adolescent amphetamine exposure, followed by a washout period, led to increased firing rates of VTA dopamine neurons, without affecting burst activity (Labonte et al., 2012).

Compared to controls, MPH-treated animals during adolescence showed a non significant (p=0.14) decrease of dopamine D2 receptor sensitivities to the 20 µg/kg dose of quinpirole (Fig. 71A,B), associated with a significantly lower proportion of neurons that were completely inactivated by the agonist. When apomorphine, another potent dopamine D2 receptor agonist routinely used in electrophysiology, was given intravenously to adult rats up to a total dose of 50 µg/kg, animals previously exposed to chronic MPH during adolescence displayed significantly lower firing rate reductions, proving a partial desensitisation of dopamine D2 autoreceptors following adolescent MPH treatment (Fig. 71C,D). It is possible that this partial desensitisation is responsible for the moderate increase in firing rate and population activity observed in the present study in MPH-treated animals. Indeed, these dopamine inhibitory autoreceptors are known to be particularly important to control and modulate the firing activity of VTA dopamine neurons (Eddine et al., 2015; Ford, 2014; Pothos et al., 1998). Both groups (controls and MPH-treated animals) were equally sensitive to intravenous MPH re-challenges (2 mg/kg), inducing a reversible (eticlopride 0.2 mg/kg) strong reduction (50-65%) of firing rates, although the MPH-treated group tends to show a slightly reduced response to methylphenidate (Fig. 72). These results indicate that, contrary to what was previously observed following a chronic adult MPH treatment, adolescent MPH treatment, followed by a washout period, does not induce long-lasting dopamine transporter desensitisation (Chapter IV, Fig. 55-56) but may alter the binding properties of dopamine D2 receptor agonists onto D2 autoreceptors (Fig. 71). However, one could have expected a larger decrease in MPH-induced inhibition of firing activity in MPH-treated animals, as we demonstrated that the dopamine D2 autoreceptor is partially desensitised in these animals. The reason for this discrepancy probably lies in the fact that dopamine D2 agonists target more potently a larger population of dopamine autoreceptors, with which they interact directly, unlike methylphenidate. Whether it is the total density of midbrain dopamine D2/D3 autoreceptors, or their intracellular
signalling capacity, that has been altered, needs to be addressed. In midbrain dopamine D2 receptor deficient mice (using conditional dopamine D2 receptor knockout), cocaine induced stronger locomotor activity than in wild-type animals (Bello et al., 2011). Very interestingly, another recent electrophysiological study has shown that obese mice (fed with a high-fat diet) present milder quinpirole-induced firing rate reduction than control mice (Koyama et al., 2014). Therefore, one could assume that chronic psychostimulant use can induce long-term dopamine D2 receptor desensitisation, which, in turn, could affect food and drug seeking behaviour. It would be particularly important to examine whether this partial desensitisation observed in our study is only observable on the dopamine autoreceptors found in the VTA, or if such a desensitisation can also affect other populations of dopamine D2 receptors, such as the post synaptic D2 autoreceptors found in striatal medium spiny neurons.

Here, we also observed higher firing rates of VTA dopamine neurons in the majority of the recordings (79%) after the combination of both MPH and eticlopride administrations, regardless of previous adolescent exposure to MPH or not, suggesting that adolescent exposure to MPH does not prevent the later excitatory component of MPH (Fig. 72). Another study (Shen et al., 2006), using a similar protocol, did not observe any change in VTA dopamine neuron electrical activities following adolescent MPH administration (1 mg/kg for 21 days followed by extensive washout periods of either 30 or 60 days). Interestingly, this study also focused on intravenous dopamine D2 receptor agonism challenges (apomorphine 20 µg/kg and quinpirole 0.1-70 µg/kg) and found no differences between controls and adolescent MPH-treated animals (Shen et al., 2006). Another study showed that adolescent exposure to MPH (10 mg/kg for 7 days) increases significantly locomotor sensitivity to cocaine challenges following 14 days of washout (Brandon et al., 2001).

We did not observe any changes in NMDA2B protein expression levels in the prefrontal cortex (PFC) of adult rats following adolescent exposure to 4-5 mg/kg/day of chronic MPH, regardless of the types of administration routes (Fig. 73). The study by Mao in 2009 using repetitive amphetamine exposure (4 mg/kg for 7 days, i.p., 14-60 days washout) found a persisting downregulation of striatal NMDA receptor 2B protein levels (Mao et al., 2009). However, such differences can be explained by the use of higher doses, adult animals (175-200 g) and different administration routes, as well as
different molecular targets (MPH exerts blockade of extracellular dopamine reuptake while D-amphetamine blocks vesicular dopamine reuptake). It must be noted that NMDA receptor 2B protein levels in the prefrontal cortex are high at adulthood, compared to levels found in the striatum and are required for normal persistent activity (Monaco et al., 2015; Urban et al., 2014; Wang et al., 2008). Moreover, these studies suggested that the ratio between NMDA$_{2B}$ and NMDA$_{2A}$ is responsible for the establishment of both long-term potentiation and adaptation. The authors also reported decreased NMDA receptor 2B protein levels in the prefrontal cortex following a single (1 mg/kg, intraperitoneal) juvenile MPH administration (Urban et al., 2013b), a result opposite to what we observed in the present study (Chapter II, Fig. 37). Previously, we have found that chronic MPH treatment does not induce alterations of NMDA$_{2B}$ protein expression in the PFC of adult rats (Chapter IV, Fig. 63). Here, we also demonstrate that chronic adolescent exposure to MPH, followed by an extensive washout period, does not change cortical NMDA$_{2B}$ protein expression, which is consistent with our previous observations (Fig. 37).

Finally, adolescent exposure to MPH induced behavioural sensitisation to D-amphetamine, assessed by an immediate but relatively short-lasting increased number of rearing events induced by D-amphetamine (1 mg/kg, intraperitoneally) in adult animals previously exposed to MPH during adolescence (Fig. 74). Such cross-sensitisation between these two psychostimulants can underlie plastic mechanisms than occur following stimulant exposure during adolescence. Moreover, early MPH exposure may lay grounds for later substance abuse. This results stand in contrast to a previous study, where the authors found no relationship between adolescent exposure to MPH and sensitisation to methamphetamine in later life (Kuczenski et al., 2002). Nevertheless, our behavioural findings stand in complete concordance with our electrophysiological data showing partial desensitisations of dopamine D$_2$ autoreceptors. As mentioned earlier, specific VTA inactivation of presynaptic dopamine D$_2$ receptor has been found to be associated with increased sensitivities to cocaine (Bello et al., 2011). We therefore hypothesised that chronic MPH treatment during adolescence can induce persistent changes in dopamine D$_2$ receptor sensitivity, which can then translate into increased sensitivities to addictive drugs.
In this fifth chapter, we have demonstrated that adolescent exposure to MPH, followed by 28 days of drug withdrawal, does not induce delayed growth, depression, or cortical NMDA$_{2B}$ protein expression variation. We have also reported that such treatment can induce long-term consequences on the electrical functions of DRN serotonin and VTA dopamine neurons. After drug withdrawal, midbrain dopaminergic neurons may display partial dopamine D$_2$ autoreceptor desensitisation. It would also appear that adolescent exposure to MPH can induce sensitisation to later D-amphetamine exposure in adulthood, which we believe to be associated with a partial desensitisation of dopamine D$_2$ autoreceptors, within the midbrain. Further research will be necessary to understand other possible long-term modifications of brain functions that can arise following chronic adolescent psychostimulant exposure.
Chapter VI – The conjunction of caffeine or nicotine, two other freely available psychostimulants, with methylphenidate.

VI-1- Introduction

Caffeine and nicotine, two licit drugs, are widely consumed in the population, among other drugs, like alcohol (Crocq, 2003; Martin et al., 2008). Both drugs are easily available to the public.

Caffeine, produced by the *coffea* plant genus and by tea plants, belongs to the Xanthine family and possesses psychoactive effects (Nehlig et al., 1992). Caffeine exerts non-specific blockade of A₁, A₂ and A₃ adenosine receptors with widely ranging IC₅₀ and K_i values (Table 1) (Daly, 2007; Hunter et al., 1990; Schwabe et al., 1985; Snyder et al., 1981). One cup of coffee, containing on average 80 mg of caffeine and therefore resulting in 0.4 to 2.5 mg/kg of caffeine intake, already significantly blocks adenosine receptors (Fredholm et al., 1999). In rats, caffeine binds to adenosine A₁, A_{2A} and A_{2B} receptors with respective K_D values of 20, 8.1 and 17 µM but also possesses low-affinity binding (190 µM) for A₃ receptors (Fredholm et al., 1999). Because of its structural resemblance to strychnine, caffeine also mildly blocks ionotropic glycine receptors, with IC₅₀ values below the millimolar range (Duan et al., 2009). In humans, caffeine is ingested to increase locomotor activity and combat fatigue (Glade, 2010; Nehlig et al., 1992), although some do not experience such effects. According to one study, adjunct methylphenidate therapy (10 mg) with a low dose of caffeine (10 mg) produced a stronger attenuation of behavioural symptoms in ADHD children, compared to methylphenidate alone (Garfinkel et al., 1981). Therefore, caffeine supplementation may be an effective tool to decrease total MPH intake. In young adults, caffeine use can modulate ADHD symptoms (Broderick et al., 2004), but a recent study has observed that caffeine can only be linked to ADHD if taken in combination with nicotine (Dosh et al., 2010). In young adolescents, one study reported a clear association between high caffeine consumption (4 or more beverages per day) and ADHD (Martin et al., 2008).
Early caffeine consumption in young rats leads to increased locomotor activities following adult methylphenidate challenge, proving a cross-sensitisation between the two drugs (Boeck et al., 2009). However, some animal studies have reported the beneficial effects of caffeine on ADHD symptoms (Ioannidis et al., 2014). In an animal model of ADHD (juvenile administration of the dopamine and norepinephrine neurotoxin 6-hydroxy-dopamine), a 14-day chronic caffeine treatment improved spatial attention (Caballero et al., 2011), providing potential evidence for caffeine to be used as an adjuvant to psychostimulants, as shown previously (Garfinkel et al., 1981). Another study on adolescent spontaneous hypertensive rats (an animal model of ADHD) revealed that chronic caffeine administration (2 mg/kg, twice a day) for 21 days can normalize ADHD traits (Pandolfo et al., 2013).

Nicotine is a potent agonist of nicotine acetylcholine receptors. To date, 12 subunits (α2-10, β2-4) can enter into the composition of neuronal nicotine acetylcholine receptors (Itier et al., 2001; McGeehee et al., 1995; Sargent, 1993). Extracted from tobacco plants, nicotine also belongs to an alkaloid family. EC50 values for nicotine onto α7, α4β2 and αβ4 were found to be of 13.2, 0.1-2.5 and 87 µM (Table 1) (Papke et al., 2007; Xiu et al., 2009). Although the legal age for nicotine consumption in the UK is 18 years old, many abuses have been recorded in adolescents. In fact, a recent European study found that 17.3% of adolescents smoke every week in the UK (Pfortner et al., 2015). Current literature on nicotine and ADHD remains contradictory. Some clinical studies reported increased craving for nicotine after methylphenidate intake in ADHD adults (Bron et al., 2013), while another study reported higher nicotine use among young adults with ADHD, compared to the background population (Symmes et al., 2015). Contrary to what is observed in humans, one study did not find any correlation between adolescent MPH exposure (10 mg/kg per os once a day for 7 consecutive days) and adult nicotine sensitisation (0.4 mg/kg, subcutaneous) in rats (Justo et al., 2010). It is necessary to assess the questions regarding the fact that ADHD medication may lead to smoking. A Dutch study reported that smoking amongst ADHD patients is twice the national average and that methylphenidate use increases tobacco consumption (Bron et al., 2013). Acute methylphenidate is also responsible for increases in nicotine consumption in ADHD patients (Vansickel et al., 2011) and non-ADHD patients (Rush et al., 2005). However, some studies suggest that methylphenidate could be an efficient medication for reducing nicotine intake in ADHD patients (Covey et al., 2010;
Gehricke et al., 2011; Hammerness et al., 2013), but another study has proved its inefficiency (Hurt et al., 2011).

Findings concerning nicotine, ADHD and methylphenidate remain very contradictory and therefore require further investigation. In this final chapter, we will investigate how nicotine or caffeine could interfere with methylphenidate on dopaminergic neurons, using the same technique as described previously. A special focus will be placed upon neuronal sensitisation to MPH following pre or post-exposure to either nicotine of caffeine.

VI-2- Material and Methods

VI-2-A- Subjects and groups

Eighty-three male Sprague-Dawley rats were purchased from Charles River, UK. Animals were housed in groups of 2-4 per cage, maintained at 20-22°C with humidity rates above 40% under a 12:12 L/D cycle with lights ON at 07h00. Food and water were provided ad libitum. Animals were allowed a 3-day acclimatisation period after delivery. All experiments were performed during the light phase and with permission from the UK Home Office and De Montfort University Ethics Committee under the Project Licence 60/4333 and with the Personal Licence 60/13750.

Animals belonged to one of the three groups:
- Naive animals
- Animals voluntarily drinking 5 mg/kg/day of MPH (or vehicle alone) in 2 ml/kg of a sucrose 10% (w/v) solution, orally and for 15 consecutive days, followed by a 28-day washout period.
- Animals receiving 4 mg/kg/day of MPH (or vehicle alone) in 1.2 ml/kg of saline, intraperitoneally and for 15 consecutive days, followed by a 28-day washout period.
VI-2-B. *In vivo* extracellular single unit electrophysiology

Please refer to paragraph II-2-B. Here, only single barrel borosilicate electrodes were used. A total of 67 neurons were recorded within this chapter.

VI-2-C. Behaviour

Sixteen naïve rats weighing 250 grams were housed individually at the beginning of the behavioural experiments. All drugs were dissolved into saline. Animals received a single intraperitoneal injection of either: 0.8 ml/kg of saline (NaCl 147 mM), 0.1 mg/kg of nicotine, 3 mg/kg of D-amphetamine or a combination of both 3 mg/kg of D-amphetamine and 0.1 mg/kg of nicotine. Four animals were used within each group. Animals were then scored for behavioural parameters during 15 minute time periods and up to a total of 60 minutes. The counting of well-defined behavioural traits such as rearing, scratching, grooming, jumping, running, climbing, catalepsy and stereotypical movements was done manually. At the end of the 60 minute observation period, animals were sacrificed by cervical dislocation and the brains were quickly removed, dissected out and immersed into liquid nitrogen. Brain regions were kept at -80°C for further protein analysis.

VI-2-D. Data analysis

Please refer to the data analysis explained in paragraph II-2-E.

VI-3. Results

VI-3-A. Caffeine does not change baseline firing or burst activity of VTA dopamine neurons, or the efficiency of the combination of both MPH and eticlopride

When the adenosine antagonist caffeine was administered at 2 mg/kg increments and up to a cumulative dose of 10 mg/kg, no change in the firing or burst activity of midbrain dopamine neurons was observed in 6 out of 6 recordings (Fig. 75), although a small tendency to decreased firing rates were observed from 2 to 8 mg/kg.
Figure 75: Caffeine administration does not induce significant electrophysiological changes to midbrain dopamine neurons.

(A): Caffeine intravenous administration, using progressive 2 mg/kg increments and up to a cumulative dose of 8 mg/kg, induces small but non-significant reductions of the firing rate of VTA dopamine neurons. (B): Similar results were observed on burst discharges. (C): Representative time course neuronal recording with progressive caffeine administration. Boxed is shown the typical action potential waveform of this neuron.

Pre-administration of caffeine (10 mg/kg) did not induce a significant change (firing: \(F_{(1,27)}=0.05, p>0.8\), bursts: \(F_{(1,27)}=1.16, p>0.3\)) in the neuronal responses to subsequent MPH (2 mg/kg) and eticlopride (0.2 mg/kg) intravenous challenges (Fig. 76). However, the excitatory effect induced by both drugs (MPH and eticlopride) was observed in all of the recordings after caffeine pre-treatment (100%, 6/6, Fig. 76), a result that does not differ from recordings performed without such pre-treatment (83% of all neurons, 19/23, \(p>0.54\), Fisher exact test, Fig. 77).
Pre-treatment with caffeine does not prevent the excitatory component of methylphenidate following dopamine D₂ receptor antagonism.

Pre-treatment with 10 mg/kg of caffeine did not alter the excitatory component of MPH (2 mg/kg) on the firing rates (A) and burst activities (B) of VTA dopamine neurons following dopamine D₂ receptor antagonism (eticlopride 0.2 mg/kg). (C): Representative time course recording of such protocol. Boxed is shown the typical action potential waveform of this neuron. **P<0.01, ***P<0.001 vs. respective baselines, Bonferroni after significant repeated measures two-way ANOVA.
Figure 77: Pre-treatment with caffeine tends to increase the excitatory component of methylphenidate following dopamine D₂ receptor antagonism.

Caffeine pre-exposure (10 mg/kg) tends to non-significantly increase the responses of VTA dopamine neurons to MPH/eticlopride administrations, assessed by the number of supplementary spikes (A) or burst activities (B) induced by the combination of MPH and eticlopride (respectively with p=0.36 and p=0.3, unpaired Student's t-test).

VI-3-B- The distinction between three neuronal populations following nicotine administration

The acetylcholine receptor agonist nicotine, administered at 50 µg/kg increments and up to a cumulative dose of 100 µg/kg, failed to induce significant changes in the firing and burst activities of midbrain dopamine neurons when a large population of neurons was recorded (n=20, Fig. 78A,B). However, based upon individual responses, three populations of neurons could be differentiated. Indeed, some neurons (6/20, 30%) significantly increased (by more than 20% from baseline levels) their firing rates and burst activities following 50 µg/kg of intravenous nicotine (Fig. 78C,D). Other neurons (5/20, 25%) significantly decreased (by more than 20% from baseline levels) their firing rates and burst activities following the same dose of nicotine. Some other neurons (9/20, 45%) did not respond to the 50 µg/kg dose of nicotine. In the neurons that were originally insensitive to nicotine, a further 50 µg/kg dose of nicotine was administered (cumulative dose of 100 µg/kg). Following such administration, 1 neuron had its firing rate significantly increased while 4 neurons had their firing rates significantly decreased. Four neurons (20%) remained rate-insensitive to any of the nicotine doses. Both doses of nicotine (50 and 100 µg/kg) significantly
increased firing rates in 6 and 7 neurons out of 20 (p<0.01 and p<0.001, respectively, compared to saline response, Fisher’s exact test) and significantly decreased firing rates in 5 and 9 neurons out of 20 (p<0.01, compared to saline response, Fisher’s exact test). Burst activities followed the same trend, except for the 100 µg/kg where it induced burst increases in 8/20 neurons while decreasing burst activities in 5/20 neurons. Compared to the 50 µg/kg dose, the 100 µg/kg dose did not induce significant changes in population responses (Fig. 78C,D, Fisher’s exact test). Typical recordings showing the three different responses of such neurons to nicotine administration (insensitivity, decreases and increases of firing rates) are respectively displayed in Fig. 78E. To be noted: following saline administration, both the burst and the firing activities increased in 1 out of 20 neurons, decreased in 1 out of 20 neurons and no significant changes in the electrical discharges were observed in the remaining 18 neurons.
Figure 78: Responses of midbrain dopamine neurons to intravenous nicotine challenges.

In a neuronal population consisting of 20 neurons, cumulative intravenous doses of nicotine (50-100 µg/kg) did not significantly alter the spontaneous firing rates (A) or burst discharges (B) of such a neuronal population. (C, D): Following 50 and 100 µg/kg of nicotine, some neurons remained insensitive to progressive nicotine exposure, while others displayed firing rate/burst activations (increase of baseline activity by more than 20%) or inhibitions (decrease of baseline activity by more than 20%). Numerical values indicate the number of neurons in each group. (E): Three neuronal populations could therefore be distinguished, based upon their responses to nicotine: neurons insensitive to nicotine, neurons responding by a decrease in firing rate and those responding by an increase in firing rate. (F): In one neuron (5%, 1/20), a transient decrease of firing rate was observed following nicotine exposure. **P<0.01, ***P<0.001, Fisher exact test when compared with the proportion of respective responses in the saline group. ns: non-significant.
VI-3-C- Nicotine does not change the efficiency of the combination of both MPH and eticlopride.

Nicotine pre-administration (100 µg/kg) did not reduce the efficiency of MPH (2 mg/kg) to induce firing rate decreases (Fig. 79A). Eticlopride (0.2 mg/kg) successfully recovered baseline firing rates in 6 out of 6 neurons (Fig. 79A,C). In this population of neurons, no significant change in burst activities was observed following either nicotine, MPH or eticlopride (Fig. 79B). Here, we conclude that the combination of nicotine with MPH, compared to MPH alone, neither enhances nor reduces the efficiency of MPH in inducing midbrain dopamine neuron electrical activity alterations. Moreover, the excitatory component of MPH/eticlopride still persists in animals pre-treated with nicotine.

Figure 79: Pre-treatment with nicotine does not alter the excitatory component of methylphenidate following dopamine D₂ receptor antagonism. Nicotine pre-exposure (100 µg/kg) did not significantly modify the excitatory component of MPH (2 mg/kg) on the firing rates (A) and burst activities (B) of VTA dopamine neurons following dopamine D₂ receptor antagonism (eticlopride 0.2 mg/kg). (C): Representative time course recording of such protocol. Boxed is shown the typical action potential waveform of this neuron. *P<0.05 vs. baseline or specified conditions, paired Student’s t-test.
In these 6 neurons pre-treated with 100 µg/kg of nicotine, 4 neurons (67%) still presented higher firing rates following MPH/eticlopride (Fig. 80), providing evidence for the previously observed excitatory effect of both MPH and eticlopride on dopamine neurons, exactly as noted before in Chapter III. Nicotine pre-treatment did alter neuronal responses to MPH/eticlopride (Bonferroni after significant repeated measures two-way ANOVA).

Figure 80: Pre-treatment with nicotine does not alter the methylphenidate-induced excitatory effects on midbrain dopamine neurons.

(A, B, C, D): Nicotine pre-exposure (100 µg/kg) did not significantly modify the excitatory component of MPH (2 mg/kg) on the firing rates (F(1,27)=0.38, p>0.5) and burst activities (F(1,27)=0.21, p>0.6) of VTA dopamine neurons following dopamine D2 receptor antagonism (eticlopride 0.2 mg/kg). *P<0.05, **P<0.01 vs. baseline, Bonferroni after significant repeated measures two-way ANOVA.

VI-3-D- Adolescent exposure to MPH tends to reduce neuronal sensitivity to the combination of nicotine, MPH and eticlopride

In 9 adolescent animals that received 5 mg/kg/day of oral MPH for 15 days followed by a 28-day washout period, nicotine pre-administration did not change neuronal responses to subsequent intravenous challenges with MPH and eticlopride (Fig. 81-82). Adolescent MPH exposure does not alter neuronal responses to nicotine, MPH and eticlopride (firing: F(1,21)=0.47, p>0.5, burst: F(1,21)=1.61, p>0.2, Bonferroni
after significant repeated measures two-way ANOVA). Administration of nicotine (100 µg/kg) as a post-treatment (following MPH/eticlopride challenges) also failed to induce significant alterations in burst or firing activities (Fig. 83) in animals that received chronic adolescent MPH treatments (4 mg/kg/day, i.p. and for 15 days, followed by a 28-day washout period). However, we observed a small reduction in neuronal sensitivity to nicotine, MPH and eticlopride when animals were previously exposed to chronic MPH treatment during adolescence. We pooled all data and observed lower excitatory effects of MPH following eticlopride and/or nicotine pre/post-treatments (Fig. 84). Therefore, nicotine does not alter neuronal responses to intravenous challenges of either MPH or eticlopride, in either naive or MPH-treated animals during adolescence, but adolescent exposure to MPH may lead to decreased sensitivity of VTA midbrain neurons in adulthood to intravenous challenges of the combination of nicotine, MPH and D₂ receptor antagonism.
Figure 81: Absence of cross-sensitisation between adolescent exposure to methylphenidate and adult exposure to nicotine. (A, B): Adolescent exposure to chronic MPH did not alter the responses of VTA dopaminergic neurons to nicotine administrations in adulthood. (C, D): Firing rates and burst discharges alterations following cumulative nicotine administration (50 and 100 µg/kg) in control and MPH-treated animals. As observed previously, some neurons remained insensitive to progressive nicotine exposure, while others displayed firing rate/burst activations or inhibitions. Based upon neuronal responses to nicotine, control and MPH-treated animals did not display significantly different responses. n values indicate the number of neurons in each group. Note that adolescent exposure to MPH tends to decrease the efficiency of nicotine to induce firing rate inhibitions (C). *P<0.05, **P<0.01 vs. baselines, Bonferroni after significant repeated measures two-way ANOVA. ns indicates a non-significant difference using the Fisher exact test.
Figure 82: *In vivo* extracellular single cell recordings illustrating the absence of cross-sensitisation between adolescent exposure to methylphenidate and later exposure to nicotine.

Representative time course recording of such a protocol in control animals (A) and MPH-treated animals (B). No differences between the two groups were observed. Boxed are shown the typical action potential waveforms of these two midbrain dopamine neurons.
Figure 83: *In vivo* extracellular single cell recordings illustrating the absence of cross-sensitisation between adolescent exposure to methylphenidate and post-exposure to nicotine.

Representative time course recording of such a protocol in control (n=2, A) and MPH-treated animals (n=5, B). No significant differences between the two groups were observed. Boxed are shown the typical action potential waveforms of these two midbrain dopamine neurons.

Figure 84: A possible tendency of adolescent methylphenidate exposure to induce long-lasting desensitisation to the excitatory component of MPH.

Adolescent exposure to MPH led to non-significantly decreased excitatory components of MPH in adulthood on the firing (A) and burst activities (B) of VTA dopaminergic neurons (respectively p=0.49 and p=0.12 vs. vehicles, unpaired Student’s t-test).
Nicotine administration (100 µg/kg), in combination with D-amph (3 mg/kg), reduced D-amph-induced high rearing activities to similar levels observed with vehicle administration during the first 45 minutes, after which no further distinction could be seen between the two groups (D-amph vs D-amph combined with nicotine, Fig. 85). It is important to note that although the total number of rearing events of these animals was decreased (D-amph + nicotine), the time spent by each animal during such events was greatly enhanced, suggesting a tendency towards continuous rearing events. Nicotine alone does not induce any rearing activity, similarly to vehicle administration. These results suggest that nicotine may temporarily delay the effects of D-amphetamine on rearing behaviour.

Figure 85: Nicotine normalises the rearing events induced by acute D-amphetamine exposure.

(A): Acute intraperitoneal exposure to 3 mg/kg of D-amphetamine increased rearing events in rats to levels significantly higher than 1 ml/kg of vehicle (F₁,₆=12.97, p<0.01) or 100 µg/kg of nicotine (F₁,₆=18.54, p<0.001). The adjunction of nicotine (100 µg/kg) to D-amphetamine (3 mg/kg) delayed the events induced by D-amph alone (F₁,₆=5.91, p<0.05). *P<0.05, **P<0.01 vs. vehicle, Bonferroni tests after significant repeated measures two-way ANOVA. (B): Adjunction of nicotine to D-amphetamine significantly reduced the number of rearing events, to similar levels to those observed following vehicle exposure, but the time spent during each rearing event was greater (not scored). ***P<0.001 vs. vehicle, $$$$P<0.001 vs. D-amph, Newman–Keuls after significant one-way ANOVA. n.s., non-significant. n=4 in each group.
First, the present study observed the lack of effects of progressive caffeine exposures on VTA dopamine neurons (Fig. 75). This suggests that adenosine receptor antagonism does not influence the electrical discharges of midbrain dopaminergic neurons. However, a study by Stoner in 1988 revealed that caffeine strongly decreases neuronal activities in such neurons (Stoner et al., 1988), an effect that we only observed at its minimum. The authors also highlighted the importance of dopamine D$_2$ receptors in the mediation of such effects, as haloperidol administration (dopamine D$_2$ receptor antagonist) recovered the caffeine-induced firing rate depression, an effect that we never observed. Some studies suggested that caffeine (10 mg/kg, i.p.) triggers dopamine release in the nucleus accumbens via blockade of adenosine A$_1$, but not A$_2$ receptors, which can explain the amphetamine-like effects of caffeine in inducing firing rate decreases (Quarta et al., 2004; Solinas et al., 2002). Our results stand in contrast to these studies. Indeed, a cumulative dose of 10 mg/kg of caffeine failed to produce any significant change in the firing activities of VTA dopamine neurons, even with progressive 2 mg/kg increments (Fig. 75). Moreover, following caffeine administration, a subsequent dopamine D$_2$ receptor antagonism (eticlopride 0.2 mg/kg) failed to reveal any hidden excitatory or inhibitory component of caffeine in all of the VTA midbrain dopamine neurons recorded this way (6/6 neurons, Fig. 76C). Such differences can be explained by the different sensitivities to caffeine of the VTA and nucleus accumbens. Indeed, intermediate doses of caffeine (2.5-5 mg/kg) induce neuronal activation in the VTA, the thalamus and the amygdala, while higher doses (10 mg/kg) activate the shell of the nucleus accumbens, responsible for reward pathways (Nehlig et al., 2000). Moreover, caffeine could stimulate meso-accumbens neurons, as suggested before (Solinas et al., 2002). In the present study, we did not observe any increased firing rate activities in midbrain dopamine neurons after caffeine administration. In another study, caffeine was found to prevent cocaine-induced dopamine release in the nucleus accumbens (Malave et al., 2014). Therefore, different mechanisms may take place in the VTA and nucleus accumbens, which could explain our results.

Acute caffeine pre-administration slightly enhanced the hidden excitatory effects of MPH on VTA dopaminergic neurons (Fig. 76-77). Indeed, we found that caffeine pre-treatment tends to increase the excitatory effect of MPH/eticlopride. Moreover, in 6
out of 6 neurons (100%), the firing and burst activities were significantly greater following the drug combination compared to neurons that did not receive caffeine pre-treatment (13/23, 57%). Cross-sensitisation between acute caffeine and MPH is therefore unlikely using our experimental protocol, but chronic caffeine consumption is known to induce such an effect (Boeck et al., 2009; Holtzman, 1987). Co-localisation and functional interaction between adenosine A_{2A} receptors and dopamine D₂ receptors have been observed in rat striata (Ferre et al., 1994; Ferre et al., 2008; Fuxe et al., 2005; Torvinen et al., 2005). Dopamine D₁ and adenosine A₁ receptors also have antagonistic effects (Ferre et al., 1996; Lillrank et al., 1999; Rimondini et al., 1998), and can sometimes co-localise (Gines et al., 2000). If the excitatory effects of MPH on VTA dopamine neurons is triggered through dopamine D₁ receptors, then one could assume that interactions between dopamine D₁ receptors and adenosine A₂ receptors could mediate such greater excitatory inputs following caffeine exposure. In other words, adenosine A₂ receptor blockade by caffeine could promote dopamine D₁ receptor activation that may be responsible for the excitatory inputs of MPH onto VTA dopamine neurons. Interestingly, the adenosine A₁ receptor does not seem to be involved in the rewarding effects of caffeine (Sturgess et al., 2010). Finally, we did not observe any in vitro cross-sensitisation of caffeine and MPH in inducing tritiated dopamine release from cortical and striatal slices (not shown).

Nicotine is known to increase firing and burst activities of ventral tegmental area dopamine neurons. In rodents, such effects start at 30-50 μg/kg of intravenous nicotine and at 0.5-1 mg/kg of intraperitoneal nicotine (Grenhoff et al., 1986; Mameli-Engvall et al., 2006; Marti et al., 2011; Maskos et al., 2005; Panin et al., 2014). Taking the neuronal population as a whole (20 neurons), no firing rate or burst activities modifications were observed following nicotine intravenous administration in our study (100 μg/kg, Fig. 78A,B). To our knowledge, only very few studies have reported different possible modulations of dopamine neurons by nicotine, while the majority of studies seem to avoid mentioning neurons that were either insensitive to nicotine or that responded by a decrease of activity. However, two studies have carried out such an objective analysis and in remarkable details. Like in the recent studies by Eddine and Zhang, we found that while some neurons are activated by nicotine, some display clear firing rate reduction, suggesting different neuronal populations (Eddine et al., 2015; Zhang et al., 2012b) and confirming our current observations (Fig. 78C,D). Such
inhibitory effects of nicotine via dopamine release were found to be triggered by indirect activation of the inhibitory dopamine D2 autoreceptor by nicotine because of the efficiency of dopamine D2 antagonism pre-treatment to prevent such inhibitory effects, but not the excitatory effects (Eddine et al., 2015). As a matter of fact, we have also observed nicotine-induced firing rate inhibition following D2 antagonism in 5 out of 8 neurons (62%), which is not in agreement with Eddine’s study. In addition, if nicotine had significantly inhibited the firing activity of dopaminergic neurons by stimulation of dopamine release, one would have expected to find a potentiation of the inhibitory effect of MPH, which was not found in our study. To explain this discrepancy, we suggest that partial activation of excitatory nicotinic receptors onto GABAergic interneurons can occur. In mice, the majority of neurons inhibited by nicotine were found to be located within the medial part of the VTA (Eddine et al., 2015), suggesting a distinct segregation, according to their responses to nicotine, of the dopamine neurons within this area. Besides, the VTA is populated by very heterogeneous neurons, responding differently to addictive drugs, such as nicotine (Lammel et al., 2014; Luscher et al., 2011). One can argue that these 3 neuronal populations (firing rate activated or inhibited by nicotine, or even no change of firing rate) can be distinguished by different receptor compositions. On the other hand, according to our own unpublished data as well as many studies, the excitatory effects of nicotine on some VTA dopamine neurons is thought to be mediated by direct stimulation of nicotinic acetylcholine receptors, most probably via α4β2 receptors, but not α7 receptors, as the potent nicotine acetylcholine receptor antagonist mecamylamine prevented nicotine-induced firing rate activation, but not the alpha-7 receptor antagonist methyllycaonitine (Chen et al., 2012; Chen et al., 2003b; Grenhoff et al., 1986; McGranahan et al., 2011; Yin et al., 2000). In humans, pharmacotherapies for smoking cessation specifically target nicotine acetylcholine receptors containing α4β2 subunits (Picciotto et al., 2013). One study has reported that VTA dopamine neurons that are activated by nicotine (50 µg/kg) display an initial firing rate decrease, an effect that is only temporary (Erhardt et al., 2002). Interestingly, iontophoretic application of nicotine has only marginal effects on the firing of dopamine neurons, while it powerfully stimulates GABA neurons (unpublished observations from our laboratory).
Here, we also show that pre-administration of nicotine (100 µg/kg) does not induce sensitisation nor desensitisation to subsequent MPH and eticlopride administrations (Fig. 79-80). Moreover, nicotine pre-treatment does not alter the excitatory component of MPH following dopamine D₂ receptor antagonism (Fig. 80C.D). Besides, adolescent exposure to MPH fails to induce sensitisation to nicotine exposure in later life, although adolescent MPH exposure tends to decrease the excitatory effects of MPH following either pre- or post-administration of nicotine and eticlopride (Fig. 81-83). These results corroborate a previous observation in rodents where locomotor cross-sensitisation between chronic adolescent MPH and acute nicotine did not occur (Justo et al., 2010). In our study, we lack results due to the diversity of the responses observed in midbrain dopaminergic neurons. Therefore, further experiments should be performed to acquire a reasonable number of neurons in each population. Nevertheless, interactions between MPH and nicotine have been demonstrated in humans (Bron et al., 2013; Rush et al., 2005; Vansickel et al., 2011), suggesting great differences between species in the responses to both drugs. However, other clinical studies have reported no association (or beneficial effects) between nicotine and methylphenidate (Covey et al., 2010; Gehricke et al., 2011; Hammerness et al., 2013).

When administered intraperitoneally, 100 µg/kg of nicotine did not induce any rearing activity (Fig. 85), as suggested before. Indeed, high doses of nicotine (ranging from 0.03 up to 1 mg/kg) are known to inhibit rearing behaviour in rodents (Chalabi-Yani et al., 2015; Iwamoto, 1984; Ksir, 1994; Rodgers, 1979). When administered in combination with D-amphetamine (3 mg/kg), nicotine (100 µg/kg) strongly reduced D-amph-induced rearing activities (Fig. 85). This result differs slightly from a previous study, where both drugs had additive effects on rearing behaviour (Jutkiewicz et al., 2008), although we observed in our study that animals spent more time during the rearing event itself. This puzzling result could be explained by a shift towards continuous stereotypy induced by the combination of D-amph and nicotine. Another study also observed similar results, where nicotine (0.1 mg/kg), given as a pre-treatment 2 hours before D-amph (0.32 mg/kg), increased D-amph-induced rearing activity as well as total locomotion (Kim et al., 2011a). These differences, however, can be explained by the use of different doses as well as different genders and strains.
In this final chapter, we have shown that caffeine and nicotine do not appear to dramatically alter the responses of VTA dopamine neurons to MPH and eticlopride challenges. However, subtle adaptations may settle in midbrain dopamine neurons in response to MPH, caffeine or nicotine exposure, or a combination of the above. While caffeine is devoid of action on baseline spike generation and burst activity, nicotine induces either firing rate enhancement, firing rate reduction, or has no consequences on the firing rates. According to our electrophysiological study, chronic MPH exposure during adolescence does not seem to induce cross-sensitisation to either nicotine or MPH in adulthood. However, it can induce subtle but persistent neuronal adaptations. Our results showing decreased sensitivity to nicotine following adolescent exposure to methylphenidate is of great interest. These results may explain the greater nicotine intake in previously-treated ADHD patients (Krause et al., 2006; Vansickel et al., 2011). Finally, ADHD patients with a history of chronic nicotine use display lower striatal dopamine transporter densities compared to non-smoking ADHD patients (Krause et al., 2003).
Chapter VII – Concluding remarks and perspectives.

The global aims of this study were to examine the pharmacology of ADHD drugs and the long-term consequences, if any, of chronic psychostimulant exposure. To some extent, we have partly achieved such objectives. The conduction of this study has enhanced our understanding of the underlying mechanisms of the three majorly prescribed ADHD drugs. One must remember that 2.7 million children are prescribed ADHD medication per year (Spiller et al., 2013), with an average cost of 1500-2200$ (United States Dollars) per patient, depending on which type of medication is used (Marchetti et al., 2001).

Results from Chapter I indicate that atomoxetine triggers a massive dopamine efflux in the striatum. Such strong neurotransmitter efflux induced by ATX can be explained by the ability of the drug to bind to other targets rather than the norepinephrine reuptake transporter itself, which contradicts its specificity, claimed by the manufacturing company. In addition, we also observed significant dopamine outflow starting at 10 µM, which is close to some regimens used in clinics. Clinical studies have shown the usefulness of ATX in ADHD treatment (Garnock-Jones et al., 2009; Harfterkamp et al., 2012; Svanborg et al., 2009; Wietecha et al., 2013a), but one can wonder if such therapeutic effects could be solely attributed to the blockade of the norepinephrine transporter. One could assume that the drug will bind to intracellular targets, which need to be formally identified. As a matter of fact, the addition of ATX to SSRIs (selective serotonin reuptake inhibitors) has been proven efficient in reducing depression levels in patients with or without ADHD (Berigan, 2004; Kratochvil et al., 2005). Many antidepressants have been shown to interact with various potassium channels (Budni et al., 2012; Donato et al., 2015; Duncan et al., 2007; Lee et al., 2014; Terstappen et al., 2003; Thomas et al., 2002), particularly with K,1.1 and K,7 (Lodge et al., 2008; Yeung et al., 1999), which control cell excitability (Edwards et al., 1995; Humphries et al., 2015; Johnston et al., 2010; Misonou, 2010; Pongs, 2008). In our experiments, atomoxetine promoted vesicular neurotransmitter efflux, which seem to...
mimick vesicular release following enhancement of neuronal excitability. Although we did not observe that this effect was dependent on K_{IR} channels, which have been shown to interact with ATX (Kobayashi <i>et al.</i>, 2010; Scherer <i>et al.</i>, 2009), other potassium channels may be involved in this dopamine releasing process by ATX, a hypothesis that has, to our current knowledge, never yet been studied. One study has found that electrically-evoked striatal dopamine release is strongly modulated by Kv₁ potassium channels (voltage-gated), while both K_{IR} and K_{ATP} channels (respectively inwardly rectifying and ATP-gated potassium channels) have very limited impact on the dopamine releasing process (Martel <i>et al.</i>, 2011). These results can partially corroborate our own observations, where blockade of K_{IR} channels, using SCH23390, did not alter ATX-induced dopamine efflux. Besides, ATX induced specific dopamine outflows, while norepinephrine (partly shown) and serotonin outflows (not shown) were respectively mildly affected and not affected by ATX superfusions. We have also found that ATX increased the NMDA-induced electrical activities of the prefrontal cortex, a result that is contradictory to a previous *in vitro* study showing blockade of NMDA receptors by ATX (Ludolph <i>et al.</i>, 2010).

Results from Chapter II show that all three ADHD drugs (methylphenidate, atomoxetine and D-amphetamine) increased the NMDA-induced electrical activities of prefrontal cortex pyramidal neurons, which can be interpreted as a possible common mechanism between these three drugs. The present study confirms the role of glutamate neurotransmission in ADHD. Impairments of such neurotransmission have been suspected in the physiopathology of ADHD (Carlsson, 2000; Chang <i>et al.</i>, 2014). Here, we have shown that ADHD drugs improve glutamate-related neurotransmission, assessed using two very different techniques: electrophysiology and western blotting. At clinically relevant concentrations, these drugs may have a facilitating effect on NMDA neurotransmission, therefore enhancing the altered striatal connectivity observed in ADHD patients when attention deficits occur (Bush <i>et al.</i>, 2013; Carrey <i>et al.</i>, 2002). Enhancement of glutamatergic functions by ADHD drugs may not be without risk when used chronically. Indeed, high glutamate concentrations induce neurotoxicity (Choi <i>et al.</i>, 1987; Sandhu <i>et al.</i>, 2003) via calcium-dependent mechanisms (Choi, 1985), but such a neurotoxicity only occurs during very high intra-synaptic glutamate concentrations, as high glutamate concentrations cannot spread through the interstitial fluid (Obrenovitch <i>et al.</i>, 1997). Moreover, clinical studies have shown that recreational
use of amphetamine derivatives (MDMA, methamphetamine and amphetamine) can induce neurotoxicity, especially when poly-drug use occurs (Gouzoulis-Mayfrank et al., 2009). There is a strong need to further investigate whether long-term enhancement of NMDA neurotransmission can be deleterious in chronically treated ADHD patients. In our study, such increases of NMDA neurotransmission by acute ADHD drug administration could be due to the indirect activation of dopamine D₁ receptors by ADHD drugs, as dopamine D₁ agonists have been shown to increase NMDA currents in isolated PFC pyramidal neurons (Chen et al., 2004) and striatal neurons (Hallett et al., 2006).

Interesting results from Chapter IV suggest that, following chronic methylphenidate, the increase of NMDA neurotransmission observed after acute ADHD drug exposure tends to disappear, as striatal NMDA neurotransmission was significantly decreased following adult treatment, assessed by both quantitative electrophysiology and western blotting.

Our study demonstrates that methylphenidate can exert a hidden excitatory effects on midbrain dopamine neurons when dopamine D₂ autoreceptor function is inhibited (Chapter III). Such an effect may help to maintain adequate dopaminergic neurotransmission, by counteracting a possible dampening of dopamine neuron activity induced by the indirect action of methylphenidate at dopamine D₂ inhibitory autoreceptors. Interestingly, this effect persists after chronic treatment with methylphenidate, at which point dopamine reuptake transporters became down-regulated. Indeed, we found that in the midbrain, chronic MPH exposure induces tolerance to subsequent MPH administration, which could be attributed to some degree of plasticity of dopamine reuptake transporters. Synaptic reorganisations of dopamine transporters have been observed in clinical studies (Wang et al., 2013). How long this effect persists after the cessation of psychostimulant treatments, providing some therapeutic benefits, will be an interesting question to address. However, our results from Chapter V show no evidence of DAT down-regulation when the rats reach adulthood.
Further research is needed to understand the impact of increased NR2B protein expression following acute psychostimulant exposure. Indeed, although the total NR2B protein expression increased in some regions, regulations of the functions and the activities of NR2B receptors also depend on receptor phosphorylation (Guo et al., 2002). Amongst all possible NMDA receptor phosphorylations, NR2B phosphorylation on tyrosine residues is crucial for receptor function and long term potentiation (Rosenblum et al., 1996; Rostas et al., 1996). Unfortunately, time constraints did not allow us to study the phosphorylation of NMDA receptors, although we have put forward the hypothesis that total NR2B protein expression can vary proportionately with receptor phosphorylation, as observed with increased expression of total as well as phosphorylated glutamate receptors (respectively GluA1 and GluA1-pSer845) following chronic cocaine exposure (Nic Dhonnchadha et al., 2013). It was also interesting to observe that this change in NMDA2B receptor expression occurred within a relatively short time interval. Whether this is associated with an increase in the total number of NR2B receptors present in the neurons or only a sub-cellular redistribution of the receptor needs to be further assessed. It is uncertain if increases in the transcription of new receptors could lead to the transposition of these receptors at the membrane surface within less than one hour. Following the activation of intracellular signals indirectly triggered by psychostimulants, additional receptors may rather arise from some intracellular pools and could therefore insert relatively quickly into the synaptic membrane. However, in 2013, Urban et al witnessed decreased total, intracellular as well as surface NR2B protein expressions following a single 1 mg/kg MPH administration (Urban et al., 2013b), suggesting down-regulation of NR2B through protein degradation. A similar protocol to the one used by Urban et al could be of great interest to determine precisely if NR2B redistribution occurs following psychostimulant exposure, or if receptor transcription increases. Alternatively, these additional receptors may have been synthesised following activation of RNA transcription by some psychostimulant-dependent pathways. Such a hypothesis has been validated by some in vitro experiments. Indeed, immediate (occurring after only 10 minutes of exposure) increases of NR2B expressions were observed after cocaine (1 µM) or SKF-81297 (D1 agonist, 10 µM) applications, which was totally prevented by anisomycin (protein synthesis inhibitor) pre-treatments (Hu et al., 2010; Schilstrom et al., 2006).
In one batch of animals, daily intraperitoneal injections for 15 days resulted in decreased weight gain. Although chronic treatment with methylphenidate did not significantly affect body weight gain, clinical studies have shown that chronic MPH use can induce loss of appetite (Wolraich et al., 2007). Attentive monitoring of possible side effects occurring during psychostimulant therapy is therefore required, especially for children and adolescents. As a matter of fact, a recent European guideline has been developed for the monitoring and the managing of such adverse effects (Graham et al., 2011), which can be as extreme as sudden cardiac deaths or suicides (Alapati et al., 2013; James et al., 2004).

Our observation that adolescent exposure to methylphenidate induces an increased behavioural sensitivity to D-amphetamine challenge in adulthood is of great interest (Chapter V). Evidence of cross-sensitisation (hypersensitivity) with other psychostimulants has been observed, using clinically-relevant doses (Valvassori et al., 2007; Yang et al., 2011; Yang et al., 2003). Here, we present evidence showing that adolescent exposure to methylphenidate can induce partial dopamine D₂ autoreceptor desensitisation in adulthood, suggesting that ADHD patients chronically treated with psychostimulants may be at higher risks of drug abuse compared to the background population. Moreover, this partial desensitisation of D₂ autoreceptors following adolescent exposure to MPH may induce the hypersensitivity observed after D-amphetamine challenge. These results are in total agreement with a previous study showing hypersensitivity to acute cocaine following adolescent methylphenidate exposure (Bello et al., 2011). Furthermore, we have also shown that MPH exposure may be used to prevent the effects of D-amphetamine (Chapter I), which indicates a possible useful effect of psychostimulants (preventing overdose). Some clinical studies have suggested the usefulness of psychostimulants (mainly MPH) to treat chronic substance abuse in patients (Khantzian, 1983; Khantzian et al., 1984; Miles et al., 2013) as well as ADHD patients with substance use disorder (Imbert et al., 2014; Levin et al., 1998; Mariani et al., 2007; Somoza et al., 2004). However, this was contested by some other clinical studies, where ADHD pharmacotherapy using psychostimulants is not likely to induce substance abuse during later life (Biederman et al., 1999; Lambert et al., 1998; Wilens, 2004; Wilens et al., 2003).
A correlation between daily sugar intake and ADHD has been hypothesised before (Johnson et al., 2011; Kim et al., 2011b; Milichap et al., 2012; Woo et al., 2014). According to these studies, increased sugar consumption, originating from fizzy drinks and snacks, is directly associated with higher risk of ADHD, suggesting either altered food-seeking behaviour or altered metabolisms in these patients, which may constitute risk factors for addiction. Sugars are known to induce dopaminergic activation, triggering strong responses in reward-related brain regions (Avena et al., 2008; Hajnal et al., 2004; Rada et al., 2005; Stice et al., 2013). Interestingly, addiction to sugar can be found in rats (Avena et al., 2008; Hoebel et al., 2009; Peters, 2011), but not in humans, although one study showed plausible arguments for sugar addiction in humans under continuous exposure to foods containing high sugar concentrations (Ahmed et al., 2013). Finally, ADHD patients also display significant increases in their caffeine consumption (Dosh et al., 2010; Pereira et al., 2004). Nicotine also seems to be positively associated with ADHD in adolescents and adults (Lambert et al., 1998; McClernon et al., 2008; Milberger et al., 1997; Molina et al., 2003; Pomerleau et al., 1995; Tercyak et al., 2002; Whalen et al., 2002). Moreover, some studies have shown that nicotine may target striatal dopamine transporters in ADHD patients (Krause et al., 2006; Krause et al., 2002).

Our behavioural study on sucrose preference did not find that a chronic treatment with methylphenidate during adolescence can cause a depressive phenotype in adulthood. Nevertheless, as previously mentioned, we found the electrical characteristics of the serotonin neurons to be persistently altered. As serotonin neurons have a very important role in the control of mood and impulsivity, as well as in the therapeutic effects of antidepressant treatments, the behavioural correlates and the molecular mechanisms involved in this change in bursting activity needs to be addressed in more detail. Clinical studies can now focus on the interaction between methylphenidate treatment and depression in ADHD patients. Therefore, if methylphenidate induces depressive traits, concerns can arise from its chronic use, as observed in a 7-year-old patient (Lakic, 2012). When MPH is used as a recreational drug, depressive symptoms can occur (Garland, 1998; Jaffe, 1991; Morton et al., 2000).
We found no evidence for cross-sensitisation between nicotine and methylphenidate in our electrophysiological investigations. This lack of results may be the consequence of the very heterogeneous effects of nicotine on different populations of dopamine neurons. Indeed, acute nicotine (100 µg/kg) exerted an excitatory effect in 35% of all neurons (7/20), an inhibitory effect in 45% of all neurons (9/20) or even no effect in the remaining 20% of all neurons (4/20). The fact that the present study observed significant firing rate reductions following nicotine exposure is very interesting. Indeed, only one study observed and explained such effects (Eddine et al., 2015), while a strong consensus seems to persist in the literature, stating that nicotine exposure only induces activation of midbrain dopamine neurons. However, the study by Eddine in 2015 explained such nicotine-induced firing rate reductions by a D₂-dependent mechanism, a result that is in opposition to what we observed within the present study (as we observed nicotine-induced firing rate reduction even following D₂ receptor antagonism, using eticlopride). The fact that current literature has not taken into account such firing rate decreases following nicotine exposure remains very surprising and needs to be further clarified. Hopefully, future work will allow definite conclusions to be drawn regarding psychostimulant exposure and smoking. To further assess any possible cross-sensitisation between activation of acetylcholine receptors (by nicotine) and dopamine neurotransmission, future animal studies might focus on the impact of chronic nicotine exposure on dopaminergic neurotransmission. Indeed, one study has reported that dopamine clearance is activated by nicotine (Middleton et al., 2004). Another study has observed that nicotine reward is dependent upon α₄β₂ receptors located on dopamine neurons, suggesting a dialogue between dopaminergic and nicotinic pathways (McGranahan et al., 2011). Moreover, in the striatum, long-term depression depends upon interactions between dopamine and acetylcholine receptors (Partridge et al., 2002). Dopamine and norepinephrine release from hippocampal slices also depends on nicotine acetylcholine receptors (Cao et al., 2005). Finally, we have also observed that nicotine was able to interact with D-amphetamine-induced effects on locomotor activity. Nicotine may precipitate some of the motor effects of D-amphetamine by inducing enhanced stereotypical events, while reducing locomotor agitation (rearing events). Whether it can be partially explained by the aforementioned effects of nicotine on dopamine transporters would be of great interest in the future.
Publications

Research articles

From the present laboratory

From a previous laboratory

Research posters

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders. (V).

Amitai N, Markou A (2010). Disruption of performance in the five-choice serial reaction time task induced by administration of N-methyl-D-aspartate receptor antagonists: relevance to cognitive dysfunction in schizophrenia. Biol Psychiatry 68(1): 5-16.

Cao YJ, Surowy CS, Puttfarcken PS (2005). Nicotinic acetylcholine receptor-mediated

\[\text{[3H]} \text{dopamine release from hippocampus. J Pharmacol Exp Ther} \text{ 312}(3): 1298-1304. \]

Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms. *Eur J Pharmacol* **764**: 562-570.

When it comes to studying ageing and the means to slow it down, mice are not just small humans. *EMBO reports* **6** Spec No: S39-S44.

Postoperative pain control in cats: clinical trials with pre-emptive lidocaine epidural co-administered with morphine or methadone. *Journal of feline medicine and surgery*.

Hamernik P, Biederman J, Petty C, Henin A, Moore CM (2012). Brain biochemical effects of methylphenidate treatment using proton magnetic spectroscopy in youth with attention-

Ioannidis K, Chamberlain SR, Muller U (2014). Ostracising caffeine from the pharmacological arsenal for attention-deficit hyperactivity disorder--was this a correct decision? A literature review. *J Psychopharmacol* 28(9): 830-836.

Justo CC, Carneiro-de-Oliveira PE, Delucia R, Aizenstein ML, Planeta CS (2010). Repeated exposure of adolescent rats to oral methylphenidate does not induce behavioral sensitization or cross-sensitization to nicotine. *Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.]* 43(7): 651-656.

Kalivas PW, Alesdatter JE (1993). Involvement of N-methyl-D-aspartate receptor stimulation in the ventral tegmental area and amygdala in behavioral sensitization to cocaine. *J Pharmacol Exp Ther* 267(1): 486-495.

Lakic A (2012). Depressive symptoms as a side effect of the sustained release form of methylphenidate in a 7-year-old boy with attention-deficit hyperactivity disorder. Vojnosanitetski pregled 69(2): 201-204.

Nimitvilai S, Arora DS, Brodie MS (2012). Reversal of dopamine inhibition of dopaminergic neurons of the ventral tegmental area is mediated by protein kinase C. *Neuropsychopharmacology* 37(2): 543-556.

Pillidge K, Porter AJ, Young JW, Stanford SC (2016). Perseveration by NK1R-/- ('knockout') mice is blunted by doses of methylphenidate that affect neither other aspects of their cognitive performance nor the behaviour of wild-type mice in the 5-Choice Continuous Performance Test. *J Psychopharmacol* 30(9): 837-847.

Trepanier CH, Jackson MF, MacDonald JF (2012). Regulation of NMDA receptors by the tyrosine kinase Fyn. The FEBS journal 279(1): 12-19.

