Show simple item record

dc.contributor.authorPopova, V.
dc.contributor.authorJohn, Robert, 1955-
dc.contributor.authorStockton, David
dc.date.accessioned2010-02-18T15:11:24Z
dc.date.available2010-02-18T15:11:24Z
dc.date.issued2009
dc.identifier.citationPopova, V., John, R. and Stockton, D. (2009) Sales intelligence using web mining. In: P. Perner (ed): Advances in Data Mining: Proceedings of 9th Industrial Conference on Data Mining (ICDM´09), Lecture Notes in Artificial Intelligence, Springer, pp.131-145.en
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/2086/3456
dc.description.abstractThis paper presents a knowledge extraction system for providing sales intelligence based on information downloaded from the WWW. The information is first located and downloaded from relevant companies’ websites and then machine learning is used to find these web pages that contain useful information where useful is defined as containing news about orders for specific products. Several machine learning algorithms were tested from which k-nearest neighbour, support vector machines, multi-layer perceptron and C4.5 decision tree produced best results in one or both experiments however k-nearest neighbour and support vector machines proved to be most robust which is a highly desired characteristic in the particular application. K-nearest neighbour slightly outperformed the support vector machines in both experiments which contradicts the results reported previously in the literature.en
dc.language.isoenen
dc.publisherSpringer Berlinen
dc.subjectweb miningen
dc.subjecttext miningen
dc.subjectmachine learningen
dc.subjectnatural language processingen
dc.titleSales intelligence using web mining.en
dc.typeBook chapteren
dc.identifier.doihttp://dx.doi.org/10.1007/978-3-642-03067-3_12
dc.researchgroupManufacturing Researchen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record