• Login
    View Item 
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Computer Science and Informatics
    • View Item
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Computer Science and Informatics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ICA-Based EEG Feature Analysis and Classification of Learning Styles

    Thumbnail
    Date
    2019-11-04
    Author
    Alhasan, Khawla;
    Aliyu, Suleiman;
    Chen, Liming;
    Chen, Feng
    Metadata
    Show attachments and full item record
    Abstract
    A thorough investigation of the electroencephalograph (EEG) information may support an enriched awareness of the mechanism of understanding different learning styles patterns. Wavelet analysis is a powerful technique that uniquely permits the decomposition of complex information of trends, discontinuities, a repeated pattern. The purpose of such methods is to be able to assign simple segments at diverse locations and scales, to be remodelled afterward effectively. In this paper, we attempt to classify individual cognitive learning styles using artificial neural networks and unsupervised learning. First, we apply Independent component analysis (ICA) to extract relevant features (artefacts removal) of the EEG records. We analyse the ICA-based EEG channels data using inter-quartiles to show the degree of dispersion and skewness. Next, self-organising maps (SOM) are then created to characterise different cognitive learning styles from selected ICA-based channel data.
    Description
    Citation : Alhasan, K., Aliyu, S., Chen, L. and Chen, F. (2019) ICA-Based EEG Feature Analysis and Classification of Learning Styles. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan, November 2019.
    URI
    https://dora.dmu.ac.uk/handle/2086/19706
    DOI
    https://doi.org/10.1109/dasc/picom/cbdcom/cyberscitech.2019.00057
    Research Institute : Cyber Technology Institute (CTI)
    Peer Reviewed : Yes
    Collections
    • School of Computer Science and Informatics [2970]

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary
     

     

    Browse

    All of DORACommunities & CollectionsAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission DateThis CollectionAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission Date

    My Account

    Login

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary