Super-exponential convergence of the Karnik-Mendel algorithms for computing the centroid of an interval type-2 fuzzy set

De Montfort University Open Research Archive

Show simple item record

dc.contributor.author Mendel, Jerry M., 1938- en
dc.contributor.author Liu, F. en
dc.date.accessioned 2008-11-24T13:24:16Z
dc.date.available 2008-11-24T13:24:16Z
dc.date.issued 2007-04-01 en
dc.identifier.citation Mendel, J. M. and Liu, F. (2007) Super-exponential convergence of the Karnik-Mendel algorithms for computing the centroid of an interval type-2 fuzzy set. IEEE Transactions on Fuzzy Systems, 15 (2), pp. 309-320.
dc.identifier.issn 1063-6706 en
dc.identifier.uri http://hdl.handle.net/2086/192
dc.description KM algorithms are widely used to perform type-reduction and to compute the centroid of type-2 fuzzy sets. Because KM algorithms are iterative, there has been some concern about their convergance time. Many people have observed, from simulations, that convergence occurs rapidly, i.e. under 10 iterations; but, it is one thing to observe this in simulations and another thing to mathematically prove super-exponential convergence, as is done in this paper. So, by mathematically proving superexponential convergence, Mendel and Liu have provided the type- 2 fuzzy set community with concrete evidence of the speed of the KM Algorithms. en
dc.language.iso en en
dc.publisher IEEE en
dc.subject RAE 2008
dc.subject UoA 23 Computer Science and Informatics
dc.subject centroid
dc.subject interval type-2 fuzzy sets
dc.subject Karnik-Mendel algorithms
dc.title Super-exponential convergence of the Karnik-Mendel algorithms for computing the centroid of an interval type-2 fuzzy set en
dc.type Article en
dc.identifier.doi http://dx.doi.org/10.1109/TFUZZ.2006.882463 en
dc.researchgroup Centre for Computational Intelligence


Files in this item

This item appears in the following Collection(s)

Show simple item record