• Login
    View Item 
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Engineering and Sustainable Development
    • View Item
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Engineering and Sustainable Development
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Corrosive wear of multi-layer Fe-based coatings laser cladded from amorphous powders

    Thumbnail
    View/Open
    Accepted manuscript (2.785Mb)
    Date
    2019-11-04
    Author
    Ji, Xiulin;
    Luo, Chanyuan;
    Sun, Yong;
    Zhao, Jianhua
    Metadata
    Show attachments and full item record
    Abstract
    Since amorphous alloys exhibit good wear and corrosion resistance, they are supposed to be applied as a candidate implant material. In this work, using laser cladding, Multi-layer Fe-based alloy coatings were fabricated from amorphous powders on 316L stainless steel (SS) substrate. When the number of cladding layers increases, the microstructure of the coating was mainly composed of γ-Fe firstly, then evolved to γ-Fe and α-Fe solid solutions, and then to a composite of amorphous and crystalline phases. The surface hardness of the coating was also enhanced consequently to over 1200 HV. During reciprocate sliding against an Alumina ball in a simulated body fluid (Ringer’s solution), the volume loss and the coefficient of friction (COF) of the coatings generally decreased firstly and then increased with the number of cladding layers. During sliding at open circuit, the drop in open circuit potential (OCP) of all the Fe-based coatings, except for the 1-layer one, was not as significant as that of the 316 SS substrate. Moreover, when applying a cathodic potential during sliding, no obvious protective effect was obtained for the coatings, which indicates that the multi-layer Fe-based coatings possess a good corrosion-induced wear resistance in comparison to 316L SS. Because of the formation of an electric double layer, the fixed potential of 100 mVSCE or -600 mVSCE was beneficial to reduce the COF, especially for 316L SS. The tribocorrosion at OCP showed that the 2-layer coating possessed the best corrosive wear resistance, and its COF and volume loss were about 3 and 5.6 times lower than those of the substrate. The material loss in Ringer’s solution at OCP is mainly controlled by the mechanical wear for the coatings and the synergism between corrosion and wear for the substrate. Furthermore, this work provides a way to optimize the tribology system by adjusting the number of cladding layers to reduce COF and wear in a simulated body fluid.
    Description
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
    Citation : X. Ji, C. Luo, Y. Sun, J. Zhao, (2019) Corrosive wear of multi-layer Fe-based coatings laser cladded from amorphous powders. Wear, 438-439, 203113
    URI
    https://dora.dmu.ac.uk/handle/2086/18754
    DOI
    https://doi.org/10.1016/j.wear.2019.203113
    Research Institute : Institute of Engineering Sciences (IES)
    Peer Reviewed : Yes
    Collections
    • School of Engineering and Sustainable Development [1940]

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary
     

     

    Browse

    All of DORACommunities & CollectionsAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission DateThis CollectionAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission Date

    My Account

    Login

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary