• Login
    View Item 
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Computer Science and Informatics
    • View Item
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Computer Science and Informatics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A performance indicator for reference-point-based multiobjective evolutionary optimization

    Thumbnail
    View/Open
    Main article (2.998Mb)
    Date
    2018-11
    Author
    Hou, Zhanglu;
    Yang, Shengxiang;
    Zou, Juan;
    Zheng, Jinhua;
    Yu, Guo;
    Ruan, Gan
    Metadata
    Show attachments and full item record
    Abstract
    Aiming at the difficulty in evaluating preference-based evolutionary multiobjective optimization, this paper proposes a new performance indicator. The main idea is to project the preferred solutions onto a constructed hyperplane which is perpendicular to the vector from the reference (aspiration) point to the origin. And then the distance from preferred solutions to the origin and the standard deviation of distance from each mapping point to the nearest point will be calculated. The former is used to measure the convergence of the obtained solutions. The latter is utilized to assess the diversity of preferred solutions in the region of interest. The indicator is conducted to assess different algorithms on a series of benchmark problems with various features. The results show that the proposed indicator is able to properly evaluate the performance of preference-based multiobjective evolutionary algorithms.
    Description
    Citation : Hou, Z., Yang, S., Zou, J., Zheng, J., Yu, G. and Ruan, G. (2018) A performance indicator for reference-point-based multiobjectiveevolutionary optimization. 2018 IEEE Symposium Series on Computational Intelligence, Bengaluru, India, November 2018.
    URI
    http://hdl.handle.net/2086/17296
    DOI
    https://doi.org/10.1109/ssci.2018.8628834
    Research Group : Centre for Computational Intelligence
    Research Institute : Institute of Artificial Intelligence (IAI)
    Peer Reviewed : Yes
    Collections
    • School of Computer Science and Informatics [2968]

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary
     

     

    Browse

    All of DORACommunities & CollectionsAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission DateThis CollectionAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission Date

    My Account

    Login

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary