Show simple item record

dc.contributor.authorAbdi, Meisamen
dc.contributor.authorAshcroft, Ianen
dc.contributor.authorWildman, Rickyen
dc.date.accessioned2017-09-06T12:50:03Z
dc.date.available2017-09-06T12:50:03Z
dc.date.issued2018-03-11
dc.identifier.citationAbdi, M., Ashcroft, I. and Wildman, R. (2017) Design optimization for an additively manufactured automotive component. International Journal of Powertrains, 7 (1/2/3), pp. 142-161en
dc.identifier.urihttp://hdl.handle.net/2086/14465
dc.descriptionOther departments or research groups involved in the research: Centre for Additive Manufacturing - The University of Nottingham The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.en
dc.descriptionOpen Access article
dc.description.abstractThe aim of this paper is to investigate the design optimization and additive manufacture of automotive components. A Titanium brake pedal processed through Selective Laser Melting (SLM) is considered as a test case. Different design optimisation techniques have been employed including topology optimization and lattice structure design. Rather than using a conventional topology optimization method, a recently developed topology optimization method called Iso-XFEM is used in this work. This method is capable of generating high resolution topology optimised solutions using isolines/isosurfaces of a structural performance criterion and eXtended Finite Element Method (XFEM). Lattice structure design is the other technique used in this work for the design of the brake pedal. The idea is to increase the stability of the brake pedal to random loads applied to the foot pad area of the pedal. The use of lattice structures can also significantly reduce the high residual stress induced during the SLM process. The results suggest that the integration of the design optimization techniques with a metal additive manufacturing process enables development of a promising tool for producing lightweight energy efficient automotive components.en
dc.language.isoenen
dc.publisherInderscience Publishersen
dc.subjecttopology optimizationen
dc.subjectlattice structuresen
dc.subjectadditive manufacturingen
dc.subjectautomotiveen
dc.subjectpowertrainen
dc.subjectXFEMen
dc.subjectselective laser meltingen
dc.subjectSLMen
dc.titleDesign optimization for an additively manufactured automotive componenten
dc.typeImage, 3-Den
dc.identifier.doihttps://doi.org/10.1504/IJPT.2018.090371
dc.researchgroupEngineering and Physical Sciences Institute (EPsi)
dc.peerreviewedYesen
dc.funderEPSRC (Engineering and Physical Sciences Research Council)en
dc.projectidgrant number EP/I033335/2en
dc.cclicenceCC-BY-NCen
dc.date.acceptance2017-07-24en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record