Mining usage data for adaptive personalisation of smartphone based help-on-demand services

View/ Open
Date
2013-05-29Author
Abstract
Mobile computing devices and their applications that encompass context aware components are becoming increasingly more prevalent. The context-awareness of these types of applications typically focuses on the services offered. In this paper we describe a framework that supports the monitoring and analysis of mobile application usage patterns with the goal of updating user models for adaptive services and user interface personalisation. This paper focuses on two aspects of the framework. The first is the modelling and storage of the usage data. The second focuses on the data mining component of the framework, outlining the five different capabilities of the adaptation in addition to the algorithms used. The proposed framework has been evaluated through specific case studies, with the results attained demonstrating the effectiveness of the data mining capabilities and in particular the adaptation of the User Interface. The accuracy and efficiency of the algorithms used are also evaluated with three users. The results of the evaluation show that the aims of the data mining component were achieved with the personalisation and adaptation of content and user interface, respectively.
Description
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
Citation : Burns, W. et al. (2013) Mining usage data for adaptive personalisation of smartphone based help-on-demand services. Proceedings of the 6th International Conference on Pervasive Technologies Related to Assistive Environments, no.39
ISBN : 9781450319737
Research Institute : Cyber Technology Institute (CTI)
Peer Reviewed : Yes