Show simple item record

dc.contributor.authorShokouhi, A. H.en
dc.contributor.authorShahriari, H.en
dc.contributor.authorAgrell, P. J.en
dc.contributor.authorHatami-Marbini, A.en
dc.date.accessioned2017-02-28T16:11:52Z
dc.date.available2017-02-28T16:11:52Z
dc.date.issued2014-01
dc.identifier.citationShokouhi, A. H. et al. (2014) Consistent and robust ranking in imprecise data envelopment analysis under perturbations of random subsets of data. OR Spectrum, 36 (1), pp. 133-160en
dc.identifier.urihttp://hdl.handle.net/2086/13351
dc.description.abstractData envelopment analysis (DEA) is a non-parametric method for measuring the relative efficiency of a set of decision making units using multiple precise inputs to produce multiple precise outputs. Several extensions to DEA have been made for the case of imprecise data, as well as to improve the robustness of the assessment for these cases. Prevailing robust DEA (RDEA) models are based on mirrored interval DEA models, including two distinct production possibility sets (PPS). However, this approach renders the distance measures incommensurate and violates the standard assumptions for the interpretation of distance measures as efficiency scores. We propose a modified RDEA (MRDEA) model with a unified PPS to overcome the present problem in RDEA. Based on a flexible formulation for the number of variables perturbed, MRDEA calculates the empirical distribution for the interval efficiency for the case of a random number of variables affected. The MRDEA approach also decreases the computational complexity of the RDEA model, as well as significantly increases the discriminatory power of the model without additional information requirements. The properties of the method are demonstrated for four different numerical instances.en
dc.language.isoenen
dc.publisherSpringeren
dc.subjectData envelopment analysisen
dc.subjectRobust optimizationen
dc.subjectImprecise dataen
dc.subjectRobust rankingen
dc.titleConsistent and robust ranking in imprecise data envelopment analysis under perturbations of random subsets of dataen
dc.typeArticleen
dc.identifier.doihttp://dx.doi.org/10.1007/s00291-013-0336-5
dc.peerreviewedYesen
dc.funderN/Aen
dc.projectidN/Aen
dc.cclicenceN/Aen
dc.researchinstituteCentre for Enterprise and Innovation (CEI)en


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record