Optimised thermosyphon solar hot water heater — simulation, design and experimental analysis

Sebastian Brandmayr

PhD
2012
Optimised thermosyphon solar hot water heater — simulation, design and experimental analysis

Sebastian Brandmayr

A thesis submitted in partial fulfilment of the requirements of De Montfort University for the degree of Doctor of Philosophy (PhD)

April 2012

Institute of Energy and Sustainable Development
De Montfort University Leicester

CENTRE OF EXCELLENCE FOR RENEWABLE ENERGY RESEARCH
Ingolstadt University of Applied Sciences
Declaration

I declare that the content of this submission is my own work. The contents of the work have not been submitted for any other academic or professional award. I acknowledge that this thesis is submitted according to the conditions laid down in the regulations. Furthermore, I declare that the work was carried out as part of the course for which I was registered at De Montfort University, United Kingdom from January 2008 until April 2012. I draw attention to any relevant considerations of rights of third parties.
Abstract

Thermosyphon systems represent 70–80 % of the solar-thermal capacity installed worldwide. Outside of China — the world’s largest thermosyphon system market — thermosyphon systems using flat-plate collectors are the dominant configuration. In Southern Europe conventionally-designed thermosyphon systems with a collector area of about 2.0 m² and a storage tank of 180 l are able to deliver about 70 % of the annually needed hot water of a four person household.

However, research into the performance of thermosyphon systems has stagnated in recent years, hence the primary objective of this research was to evaluate in detail the physical factors affecting the performance of flat plate thermosyphon systems hence pointing the way towards improved performance. The investigation consisted of the implementation of a detailed dynamic system simulation, which included the development of new component models, the validation of the new component models via laboratory testing, the use of the system model in a sensitivity analysis of the significance of individual component performance and finally the testing of an improved prototype thermosyphon system.

Eighteen different geometrical and physical parameters were investigated in the sensitivity analysis to find the most significant design factors. The sensitivity analysis incorporated three different European locations, but the dependency of the optimal thermosyphon system configuration on the location was found to be rather weak.

The research concluded that a performance improvement from 70 % to 85 % of the hot water demand of a four-person household could be achieved with an improved system configuration.

The improved system prototype addressed cost reduction by the material selection for the storage tank and its built-in components as well as the selection of aluminium for the solar absorber and the use of prefabricated parts for the system support. Reverse thermosyphoning was prevented by adjusting the tank and collector inlet/outlet co-locations, while the availability of hot water was enhanced by improved hydraulic design of the storage tank.

Suggestions for further work included the development of more detailed component models and long-term testing of improved system configurations.
Acknowledgements

This research project was carried out at the Institute of Energy and Sustainable Development at De Montfort University Leicester in cooperation with the Centre of Excellence for Renewable Energy Research at Ingolstadt University of Applied Sciences.

I would like to thank my supervising team namely Prof. Vic Hanby, Prof. Wilfried Zörner and Dr. Simon Rees for the initiation of this research work, for their excellent support and guidance as well as for the revision of this thesis.

Furthermore, I would like to give special thanks to my industrial project partner CitrinSolar, in particular to Franz-Dominik Treikauskas and Hanns Koller. They were always willing to give support when needed and provided me with parts and prototypes.

Moreover, I am very grateful to the students and colleagues who accompanied me during the years at the Centre of Excellence for Renewable Energy Research, especially to Holger Müller, Hermann Riess, Matthias Sonnleitner and Christoph Trinkl. They gave me support whenever needed and made the university much more than just a place to work.

Finally, I would like to thank my parents Hans and Gertrud, my girlfriend Conny as well as my siblings Julia and Felix for their support and their encouragement throughout the work.
Table of Contents

Declaration ... V
Abstract .. VII
Acknowledgements ... IX
Table of Contents .. XI
List of Figures .. XV
List of Tables .. XXI
Abbreviations ... XXIII
Symbols... XXIV
Subscripts .. XXVI
Greek Symbols ... XXIX

1 Introduction .. 1
 1.1 Thermosyphon Solar Water Heaters ... 3
 1.2 Technical Weaknesses of State-of-the-Art Thermosyphon Systems 4
 1.3 Target of the Research Programme .. 5
 1.4 Work Packages of the Programme .. 6

2 Comprehensive Market and Literature Review.. 7
 2.1 Market and Competition Analysis .. 7
 2.1.1 Europe .. 7
 2.1.2 North Africa and Middle East .. 9
 2.1.3 Competition Analysis .. 10
 2.1.4 Trends .. 13
 2.2 Comprehensive Literature Review .. 13
 2.2.1 System Level .. 18
 2.2.2 Solar Collector ... 25
 2.2.3 Storage Tank .. 57
 2.2.4 Interconnecting Pipes ... 68
 2.2.5 Heat Transfer Medium ... 70

3 System Simulation ... 73
 3.1 Formulation of Mathematical Descriptions ... 73
 3.1.1 Fundamental Requirements ... 73
 3.1.2 Basic Working Principle of a Thermosyphon Solar Water Heater 74
 3.1.3 Flat-Plate Collectors ... 76
Table of Contents

3.2 Possibilities and Challenges using MATLAB / SIMULINK with the Extension CARNOT .. 79

3.2.1 Thermo Hydraulic Vector ... 80

3.2.2 Mathematical Description of the Simulation Blocks Used 81

3.3 Development and Validation of a Double Mantle Heat Exchanger Storage Model 93

3.3.1 Storage Tank Geometry ... 94

3.3.2 Heat Transfer Mechanisms and Stratification .. 98

3.3.3 Pressure Drop Calculation ... 103

3.3.4 Model Validation... 105

3.4 Modelling and Validation of a System Tested in Ingolstadt............................... 107

3.5 Sensitivity Analysis of Thermosyphon Systems .. 110

3.5.1 Hot Water Consumption ... 112

3.5.2 Influence of Different Climatic Conditions on the System Performance 113

3.5.3 Indication of Relevant Collector Parameters ... 115

3.5.4 Storage Tank Parameters .. 115

3.5.5 System Configuration ... 116

3.5.6 Simulation Results ... 119

3.6 Building up and Simulation of the Most Promising System Configuration 120

4 Design and Construction ... 123

4.1 Design of Collector and Storage Tank .. 123

4.1.1 Collector Prototype ... 124

4.1.2 Storage Tank Prototype ... 131

4.2 Detailed Design of the System–Prototype ... 138

4.3 Construction of the System-Prototype ... 142

5 Proof of Concept .. 145

5.1 Collector Tests ... 145

5.2 Storage Tank Tests .. 154

5.3 Experimental Optimisation of the Prototype ... 163

6 Conclusions and Outlook .. 167

6.1 System Layout ... 167

6.2 System Simulation ... 168

6.3 Thermosyphon System Prototype .. 171

6.4 Recommendations for Further Investigations .. 174

References.. 177

XII
Appendix A: Influence of the Return Pipe on the Flow Rate ... A
Appendix B: Storage Tank Model C-Code .. B
Appendix C: Technical Details and Drawings – Prototype Absorber C
Appendix D: Technical Drawing – Storage Tank .. D
Appendix E: Technical Design – System Support .. E
Appendix F: Bibliography .. F
Appendix G: Publications ... G
List of Figures

Figure 1.1: Functional Principle of a Thermosyphon System .. 3
Figure 2.1: Collector Types used in Thermosyphon Systems ... 10
Figure 2.2: Pressure-Less Thermosyphon System with Vertical Hot Water Storage and Horizontal Supply Tank in Turkey... 12
Figure 2.3: Pressurized System with Horizontal Storage Tank in Greece 12
Figure 2.4: Number of Hydraulic Circuits... 12
Figure 2.5: Contradictory Trends on the Thermosyphon Market 13
Figure 2.6: Scheme of a Close-Coupled Direct Flow Evacuated Tube System (Morrison et al., 2004) ... 15
Figure 2.7: Schematic View of the Heat Pipe Thermosyphon System Investigated by Redpath (2010).. 15
Figure 2.8: Matushita Thermosyphon System with Winter and Summer Collector (Norton and Probert, 1983) ... 19
Figure 2.9: Approach to Avoid Reverse Thermosyphoning (Scheller, 1985).................. 20
Figure 2.10: Foil Membrane Non-Return Valve (GmüR, 2002)..................................... 21
Figure 2.11: Comparison of Pumped and Thermosyphon System Performance (cf. Morrison and Braun, 1985) .. 21
Figure 2.12: Variation of Energy Output as a Function of the Heat Transfer Coefficient of the Heat Exchanger (Belessiotis and Mathioulakis, 2001)......................... 24
Figure 2.13: Layout of a Flat-Plate Collector (Kalogirou, 2004)..................................... 25
Figure 2.14: Simplified Working Principle of Anti-Reflective Coating Applied on Glass ... 26
Figure 2.15: Common Flat-Plate Collector Absorber Types ... 27
Figure 2.16: Pressure Drop per Square Metre of Different Absorber Types.................. 28
Figure 2.17: Degraded Nickel Pigmented Anodised Roll Bond Absorber (Peuser et al., 2001)... 30
Figure 2.18: Unglazed Aluminium Absorbers for a Seasonal Storage System (Hahne, 2000).. 30
Figure 2.19: Solar Fraction of a Thermosyphon System in Dependence of the Absorber Conductivity at Load Temperature $T_l = 55\, ^\circ C$ (Sharia et al., 1999) ... 33
Figure 2.20: Solar Radiation Before and After Passing the Atmosphere and Blackbody Radiation (Buhrmann, 1983)... 34
Figure 2.21: Selective Characteristics of Different Black Chrome Coatings (Niklasson and Granqvist, 1991).. 35
Figure 2.22: Sectional Drawing of a Typical Flat-Plate Collector................................. 39
List of Figures

Figure 2.23: Influence of the Spacing and Gas Filling between Absorber and Glazing on the Overall Collector Heat Loss (Vestlund et al., 2009) ... 40
Figure 2.24: Influence of the Selective Coating on the Collector Efficiency ... 45
Figure 2.25: Sketch of an Absorber Fin for the Calculation of F .. 47
Figure 2.26: Sketch of an Asymmetric Absorber Fin for the Calculation of F .. 49
Figure 2.27: Flow Path through a Harp Absorber ... 53
Figure 2.28: Approach of Converting Real Pipe Length into an Equivalent Pipe Length (Späte, 1982) ... 54
Figure 2.29: Connection Scheme of Double Mantle Heat Exchanger Storages (Morrison et al., 1999) ... 58
Figure 2.30: Flow Distributors for Pressurised Vertical Storage Tanks Proposed by Zalman and Thompson (1977) .. 59
Figure 2.31: Inlet Designs Studied by Shah and Furbo (2003) .. 60
Figure 2.32: Transient Vertical Temperature Distribution Inside the Initially Stratified Storage Tank with Divergent Nozzle at a Flow Rate of 10 l min$^{-1}$ (Alizadeh, 1999) .. 61
Figure 2.33: Centre Pane of the Storage Tank Investigated by Conslul et al. (2004) at 180 l h$^{-1}$ Draw-off Rate ... 61
Figure 2.34: Inlet Geometries Tested by Hegazy (2007) ... 62
Figure 2.35: Heat and Mass Transfer in Tank and Heat Exchanger Annulus (Andrés and López, 2002) ... 63
Figure 2.36: Effective Thermal Conductivity of a Horizontal Storage Tank with 450 mm diameter and 3 mm steel walls (Morrison et al., 1999) .. 64
Figure 2.37: Methods for Rearranging Thermal Stratification in One-Dimensional Storage Tank Models ... 68
Figure 2.38: Scheme of the Investigated Thermosyphon System (Vaxman and Sokolov, 1986) ... 69
Figure 2.39: Minimum Glycol Concentration Required for Frost Protection Compared to a Concentration Leading to Zero System Output (Norton and Edmonds, 1991) .. 70
Figure 3.1: Density Temperature Correlations of Water and Water/Glycol Mixtures used in Simulations .. 74
Figure 3.2: Functional Principle of Thermosyphon Systems .. 75
Figure 3.3: Schematic Side View of a Solar Collector and Linear Temperature Height Correlation ... 76
Figure 3.4: Difference Between Calculated and Measured Temperature Distribution Along a Collector .. 79
Figure 3.5: CARNOT Collector Subsystems .. 83
Figure 3.6: Definition of Zenith and Azimuth Angle .. 84
List of Figures

Figure 3.7: Beam Angle $\theta = 50^\circ$ for the IAM-Measurement .. 84
Figure 3.8: Model of the Thermosyphonic Pump in CARNOT .. 86
Figure 3.9: Quadratic Approach to Calculate a Mass Flow out of Pressure Terms 87
Figure 3.10: Geometrical Correlations for the Calculation of the Heights within the Simulation ... 88
Figure 3.11: Heat Losses at Pipes with Different Concentrically Layers 90
Figure 3.12: Sectional Drawing of the Storage Tank Model .. 95
Figure 3.13: Radial Drawing of the Storage Tank Model .. 96
Figure 3.14: Schematic for the Calculation of $A_{\text{store,k}}$.. 97
Figure 3.15: Scheme of Considered Heat Transfer Mechanisms ... 99
Figure 3.16: Storage Tank Areas without Heat Exchanger .. 100
Figure 3.17: Friction Coefficients as a Function of the Reynolds Number for One-Quarter Bends (Kast, 2006) .. 105
Figure 3.18: Storage Tank Heat Loss Sequence Simulated and Measured 106
Figure 3.19: Heating-up Period Measured and Simulated .. 107
Figure 3.20: Schematic View of Measurement Points used for Simulation Validation ... 108
Figure 3.21: CARNOT Model of the Reference System ... 109
Figure 3.22: Validation of the Flow Rate through the Thermosyphon Model 110
Figure 3.23: Operating Scheme of the Investigated Thermosyphon System with Flow Heater and Thermostatic Mixing Valve .. 111
Figure 3.24: Draw-off Patterns at Working Days and Weekend 112
Figure 3.25: Seasonal Variation in Hot Water Demand and Sinusoidal Cold Water Temperature .. 113
Figure 3.26: Average Temperature and Min/Max Temperatures in Ingolstadt 114
Figure 3.27: Average Temperature and Min/Max Temperatures in Rome 114
Figure 3.28: Average Temperature and Min/Max Temperatures in Malaga 115
Figure 3.29: Annual Hot Water Fraction of Reference System and the New System Setup .. 121
Figure 4.1: Main Technical Specifications of the Prototype System 123
Figure 4.2: Solar Fraction as Function of Aperture Area and Secure System Operation .. 124
Figure 4.3: Collector Length to Width Ratio .. 125
Figure 4.4: Zero Loss Collector Efficiency .. 126
Figure 4.5: Collector Efficiency vs. Percentage of Operation Time 127
Figure 4.6: Influence of the Incidence Angle Modifier on the Solar Fraction 128
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.7</td>
<td>Variation of the Linear Pressure Loss Coefficient for Different Absorber Types</td>
<td>129</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Variation of the Quadratic Pressure Loss Coefficient for a) Harp and b) Meander Absorbers</td>
<td>129</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Scheme of the Absorber Proposed</td>
<td>130</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Double Mantle Heat Exchanger Storage with Integrated Expansion Vessel (Vulcano, 2008)</td>
<td>133</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Expansion Vessel Included into the Storage Tank (Prototype Generation 1)</td>
<td>134</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Prototype with Bottom Entries</td>
<td>134</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Simulation of the Storage Tank Insulation</td>
<td>135</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>Heat Exchanger Surface</td>
<td>136</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>Heat Exchanger Volume</td>
<td>136</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>Simulated Storage Tank Diameter Variation</td>
<td>137</td>
</tr>
<tr>
<td>Figure 4.17</td>
<td>Optimum Storage Tank Volume</td>
<td>138</td>
</tr>
<tr>
<td>Figure 4.18</td>
<td>Minimum Storage Tank Height</td>
<td>139</td>
</tr>
<tr>
<td>Figure 4.19</td>
<td>Typical Storage Tank to Collector Ratio</td>
<td>139</td>
</tr>
<tr>
<td>Figure 4.20</td>
<td>Storage Tank to Collector Height Ratio</td>
<td>140</td>
</tr>
<tr>
<td>Figure 4.21</td>
<td>Collector Tilt Angle</td>
<td>141</td>
</tr>
<tr>
<td>Figure 4.22</td>
<td>Variation of the Pipe Diameter</td>
<td>141</td>
</tr>
<tr>
<td>Figure 4.23</td>
<td>Influence of the Pipe Insulation Thickness</td>
<td>142</td>
</tr>
<tr>
<td>Figure 4.24</td>
<td>Prototype Collector with Removable Transparent Cover</td>
<td>143</td>
</tr>
<tr>
<td>Figure 4.25</td>
<td>Storage Tank Prototype Tested in the Laboratory</td>
<td>144</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Absorber Infrared Test Setup</td>
<td>145</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Infrared Test Sequence at 60 l h⁻¹</td>
<td>146</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Absorber Bank Connection Schemes Investigated by Dunkle and Davey (1970)</td>
<td>148</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Experimental Setup of Ingolstadt University's Solar Simulator (Treikauskas, 2009)</td>
<td>149</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Measured Collector Efficiency Curves</td>
<td>150</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Shear Off between Absorber and Piping Weld</td>
<td>151</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Metering Points for the Collector Characterisation</td>
<td>152</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Schematic View of the Measurement Points at the Collector Casing</td>
<td>153</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Measured Casing Temperatures at Mass Flow Rate 60 kg h⁻¹</td>
<td>154</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Pressure Volume Expansion Characteristics of the Storage Tank</td>
<td>156</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>Pressure Drop of Prototype and Reference Storage Tank</td>
<td>156</td>
</tr>
</tbody>
</table>
Figure 5.13: Expansion Vessel Integrated within the Storage Tank (Prototype Generation 2) .. 157
Figure 5.14: Differentiation of an Ideal and a Real Storage Tank .. 158
Figure 5.15: Baffle Plates Used in the Storage Tanks ... 159
Figure 5.16: Storage Tank Length to Diameter Ratio .. 160
Figure 5.17: Distance Between In- and Outlet .. 160
Figure 5.18: Draw-off Curve Using the Slotted Diffuser .. 161
Figure 5.19: Hydraulic Scheme of the Testing Rig ... 163
Figure 5.20: Thermosyphon Prototype (Generation 1) on the Testing Rig .. 164
Figure 5.21: Course of Events of a Testing Day .. 165
Figure 5.22: Draw-off Curve of the Prototype System .. 166
List of Tables

Table 2.1: Scenarios for the Development of the European Solar-Thermal Market until 2020 ... 8
Table 2.2: Theoretical system configurations ... 14
Table 2.3: Comparison of Solar Collector Glazing Materials (Frei, 1998) .. 25
Table 2.4: Overview of Absorber Materials (excerpt; Treikauskas, 2009) .. 29
Table 2.5: Aluminium Alloy for the Use as Absorber Piping (Standard-Metallwerke, 2012) ... 32
Table 2.6: Optical and Thermal Characteristics of Different Coatings (excerpt; Drück, 2009) ... 35
Table 2.7: Temperature Range, Heat Conductivity and Cost of Various Insulation Materials (Reyer et al., 2002; Roesch, 1999) ... 36
Table 2.8: Excerpt of the Collector Efficiency Measurements Conducted by Frey et al. (1998) ... 50
Table 2.9: Collector Efficiency and Pressure Losses of Different Absorber Types (Treikauskas, 2005) ... 52
Table 3.1: Structure of the Thermo Hydraulic Vector (Hafner et al., 1999) ... 81
Table 3.2: Technical Data of the Reference System ... 109
Table 3.3: Collector Parameters ... 117
Table 3.4: Storage Tank Parameters ... 118
Table 3.5: System Configuration Parameters ... 118
Table 3.6: Weighted Simulation Results for Malaga ... 119
Table 3.7: Technical Data of the Most Promising System Configuration ... 120
Table 4.1: Technical Data of the Proposed Collector ... 131
Table 4.2: Influence of Material Properties on the Effective Heat Conductivity of the Storage Wall (Flat Plate Assumed) ... 132
Table 4.3: Technical Data of the Proposed Storage Tank ... 138
Table 5.1: Coefficients for the Efficiency Curve Calculation Derived from Collector Testing ... 150
Table 5.2: Tested Diffuser Shapes ... 162
Table 5.3: Useful Energy Gained by Reference and Prototype System ... 166
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Air Mass</td>
</tr>
<tr>
<td>CARNOT</td>
<td>Conventional and Renewable Energy Systems Optimization Toolbox</td>
</tr>
<tr>
<td>cf.</td>
<td>compare (Latin: confer)</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical Vapour Deposition</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>ESTIF</td>
<td>European Solar-Thermal Industry Federation</td>
</tr>
<tr>
<td>e.g.</td>
<td>for example</td>
</tr>
<tr>
<td>eqn.</td>
<td>Equation</td>
</tr>
<tr>
<td>eq.</td>
<td>Equivalent</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardisation</td>
</tr>
<tr>
<td>kW<sub>th</sub></td>
<td>Kilowatt thermal</td>
</tr>
<tr>
<td>MW<sub>th</sub></td>
<td>Megawatt thermal</td>
</tr>
<tr>
<td>PC</td>
<td>Polycarbonate</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene Terephthalate</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethylmethacrylate</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinylchloride</td>
</tr>
<tr>
<td>PVD</td>
<td>Physical Vapour Deposition</td>
</tr>
<tr>
<td>UP</td>
<td>Unsaturated Polyester</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet Light</td>
</tr>
<tr>
<td>UP</td>
<td>Unsaturated Polyester</td>
</tr>
<tr>
<td>THV</td>
<td>Thermo Hydraulic Vector</td>
</tr>
<tr>
<td>TRNSYS</td>
<td>Transient System Simulation Program</td>
</tr>
</tbody>
</table>
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, s</td>
<td>Coefficients</td>
<td>[-]</td>
</tr>
<tr>
<td>b</td>
<td>Element Number</td>
<td>[-]</td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
<td>[m2]</td>
</tr>
<tr>
<td>c</td>
<td>Heat Capacity</td>
<td>[J kg$^{-1}$ K$^{-1}$]</td>
</tr>
<tr>
<td>C_b</td>
<td>Bond Conductance</td>
<td>[W m$^{-1}$ K$^{-1}$]</td>
</tr>
<tr>
<td>d</td>
<td>Diameter</td>
<td>[m]</td>
</tr>
<tr>
<td>dT</td>
<td>Temperature Gradient</td>
<td>[K]</td>
</tr>
<tr>
<td>dt</td>
<td>Time Step</td>
<td>[s]</td>
</tr>
<tr>
<td>e</td>
<td>Surface Roughness</td>
<td>[m]</td>
</tr>
<tr>
<td>f</td>
<td>Friction Factor</td>
<td>[-]</td>
</tr>
<tr>
<td>f_{sol}</td>
<td>Solar Fraction</td>
<td>[-]</td>
</tr>
<tr>
<td>F</td>
<td>Fin Efficiency</td>
<td>[-]</td>
</tr>
<tr>
<td>F'</td>
<td>Collector Efficiency Factor</td>
<td>[-]</td>
</tr>
<tr>
<td>F_R</td>
<td>Heat Removal Factor</td>
<td>[-]</td>
</tr>
<tr>
<td>g</td>
<td>Gravity</td>
<td>[m s$^{-2}$]</td>
</tr>
<tr>
<td>G</td>
<td>Solar Irradiation</td>
<td>[W m$^{-2}$]</td>
</tr>
<tr>
<td>h</td>
<td>Convective Heat Transfer Coefficient</td>
<td>[W m$^{-2}$ K$^{-1}$]</td>
</tr>
<tr>
<td>H</td>
<td>Daily Solar Radiation</td>
<td>[MJ m$^{-2}$]</td>
</tr>
<tr>
<td>k</td>
<td>Heat Conductivity</td>
<td>[W m$^{-1}$ K$^{-1}$]</td>
</tr>
<tr>
<td>k_i</td>
<td>Incidence Angle Modifier</td>
<td>[-]</td>
</tr>
<tr>
<td>l</td>
<td>Length</td>
<td>[m]</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
<td>[kg]</td>
</tr>
<tr>
<td>m</td>
<td>Mass Flow Rate</td>
<td>[kg s$^{-1}$]</td>
</tr>
<tr>
<td>M</td>
<td>Daily Mass Flow</td>
<td>[kg]</td>
</tr>
<tr>
<td>(MC)</td>
<td>Thermal Capacity</td>
<td>[J K$^{-1}$]</td>
</tr>
<tr>
<td>n</td>
<td>Number / Refractive Index</td>
<td>[-]</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt Number (Dimensionless Heat Transfer Coefficient)</td>
<td>[-]</td>
</tr>
<tr>
<td>o</td>
<td>Arc Length</td>
<td>[m]</td>
</tr>
<tr>
<td>Δp</td>
<td>Pressure Difference</td>
<td>[Pa]</td>
</tr>
<tr>
<td>p</td>
<td>Pressure</td>
<td>[Pa]</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl Number (Fluid Specific)</td>
<td>[-]</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Q</td>
<td>Energy</td>
<td>[MJ]</td>
</tr>
<tr>
<td>\dot{Q}, $\dot{\dot{Q}}$</td>
<td>Energy Flux</td>
<td>[W]</td>
</tr>
<tr>
<td>R</td>
<td>Heat Resistance</td>
<td>[K W$^{-1}$]</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds Number</td>
<td>[-]</td>
</tr>
<tr>
<td>s</td>
<td>Chord Length</td>
<td>[m]</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
<td>[s]</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>[$^\circ$C]</td>
</tr>
<tr>
<td>(UA)</td>
<td>Heat Loss Coefficient</td>
<td>[W K$^{-1}$]</td>
</tr>
<tr>
<td>U_L</td>
<td>Overall Collector Heat Loss Coefficient</td>
<td>[W m$^{-2}$K$^{-1}$]</td>
</tr>
<tr>
<td>u</td>
<td>Heat Loss</td>
<td>[W m$^{-2}$ K$^{-1}$]</td>
</tr>
<tr>
<td>v</td>
<td>Velocity</td>
<td>[m s$^{-1}$]</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
<td>[m3]</td>
</tr>
<tr>
<td>\dot{V}</td>
<td>Volume Flow Rate</td>
<td>[m3 h$^{-1}$]</td>
</tr>
<tr>
<td>w</td>
<td>Collector Width</td>
<td>[m]</td>
</tr>
<tr>
<td>W</td>
<td>Distance between Riser Tubes</td>
<td>[m]</td>
</tr>
<tr>
<td>x</td>
<td>Function</td>
<td>[-]</td>
</tr>
<tr>
<td>z</td>
<td>Height / Thickness</td>
<td>[m]</td>
</tr>
</tbody>
</table>
Symbols

Subscripts

absorber, abs Absorber
add Additional
air Air
amb Ambient
as Asymmetric
aux Auxiliary
av Average
axial Axial
b Bottom
branch Branch
buo Buoyancy
circum Circumference
col Collector
cover Cover Plate
down Downwards
dyn Dynamic
e Edge
eff Effective
eq Equivalent
exch Heat Exchanger
fictive Fictive
fin Fin
fluid Fluid
glass Glass
h Convective
header Collector Header Tube
hor Horizontal
in Inlet, Inner
ini Initial Condition
inner Inner
<table>
<thead>
<tr>
<th>Symbols</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>insulation</td>
<td>Insulation</td>
</tr>
<tr>
<td>j</td>
<td>Matrix Index</td>
</tr>
<tr>
<td>k</td>
<td>Node Index, Conductive</td>
</tr>
<tr>
<td>L</td>
<td>Left</td>
</tr>
<tr>
<td>La</td>
<td>Langhaar Formula</td>
</tr>
<tr>
<td>load</td>
<td>Load</td>
</tr>
<tr>
<td>loss</td>
<td>Losses</td>
</tr>
<tr>
<td>lin</td>
<td>Linear</td>
</tr>
<tr>
<td>mantle</td>
<td>Mantle</td>
</tr>
<tr>
<td>mean</td>
<td>Mean</td>
</tr>
<tr>
<td>n</td>
<td>Number</td>
</tr>
<tr>
<td>node</td>
<td>Node</td>
</tr>
<tr>
<td>outer, out</td>
<td>Outer</td>
</tr>
<tr>
<td>pipe</td>
<td>Pipe</td>
</tr>
<tr>
<td>qua</td>
<td>Quadratic</td>
</tr>
<tr>
<td>r</td>
<td>Radiative</td>
</tr>
<tr>
<td>red</td>
<td>Reduced</td>
</tr>
<tr>
<td>R</td>
<td>Right</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds Number</td>
</tr>
<tr>
<td>riser</td>
<td>Collector Riser Tube</td>
</tr>
<tr>
<td>sky</td>
<td>Sky</td>
</tr>
<tr>
<td>sol</td>
<td>Solar</td>
</tr>
<tr>
<td>source</td>
<td>Source</td>
</tr>
<tr>
<td>spacing</td>
<td>Spacing</td>
</tr>
<tr>
<td>sum</td>
<td>Summarised</td>
</tr>
<tr>
<td>stag</td>
<td>Stagnation</td>
</tr>
<tr>
<td>store</td>
<td>Storage Tank</td>
</tr>
<tr>
<td>sys</td>
<td>System</td>
</tr>
<tr>
<td>t</td>
<td>Top</td>
</tr>
<tr>
<td>th</td>
<td>Thermal</td>
</tr>
<tr>
<td>tilt</td>
<td>Tilt (Angle)</td>
</tr>
<tr>
<td>up</td>
<td>Upwards</td>
</tr>
<tr>
<td>Symbol</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>use</td>
<td>Usable</td>
</tr>
<tr>
<td>wall</td>
<td>Pipe Wall</td>
</tr>
<tr>
<td>water</td>
<td>Water</td>
</tr>
<tr>
<td>wind</td>
<td>Wind</td>
</tr>
</tbody>
</table>
Greek Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>Absorption Coefficient</td>
<td>[-]</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Chord Angle</td>
<td>[°]</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>Emission Coefficient</td>
<td>[-]</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Collector Tilt Angle</td>
<td>[°]</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Wave Length</td>
<td>[m]</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>Difference</td>
<td>[-]</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>Friction Coefficient</td>
<td>[-]</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Collector Efficiency</td>
<td>[-]</td>
</tr>
<tr>
<td>(\eta_0)</td>
<td>Zero Loss Efficiency</td>
<td>[-]</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>Thermal Conductivity</td>
<td>[W m(^{-1}) K(^{-1})]</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Dynamic Viscosity</td>
<td>[kg m(^{-1}) s(^{-1})]</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Density</td>
<td>[kg m(^{-3})]</td>
</tr>
<tr>
<td>(\rho_{\text{glass}})</td>
<td>Reflexion Coefficient Glazing</td>
<td>[-]</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Transmission Coefficient</td>
<td>[-]</td>
</tr>
<tr>
<td>((\tau\alpha))</td>
<td>Transmission/Absorption Product (optical characteristics of the transparent cover)</td>
<td>[-]</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Collector Tilt Angle</td>
<td>[°]</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Beam Angle</td>
<td>[°]</td>
</tr>
</tbody>
</table>
1 Introduction

In 2009, thermosyphon systems represented 70–80 % of the solar thermal capacity installed worldwide. The overall market share of thermosyphon systems in the newly installed capacity worldwide was at 85 % (2009). In China — the world’s leading solar heating market — 95 % of the newly installed systems are thermosyphon systems (Mauthner and Weiss, 2011). The typical Chinese system is composed of a 180 l hot water storage and a 4 m² evacuated tube collector (Fawer and Magyar, 2009).

In Europe, the world’s second important market, the market share of thermosyphon systems was fairly static at 30 %. The typical European thermosyphon system uses flat-plate collectors instead of evacuated tube collectors.

In the recent years, thermosyphon systems have not been a serious focus for the research and development activities of most European manufacturers. This is quite surprising considering their enormous market potential. In standard solar-thermal literature, thermosyphon systems are generally treated in a cursory manner.

In spite of this lack of industrially-driven research, thermosyphon systems are currently becoming of increasing interest to Central European manufacturers of solar-thermal components and systems. These manufacturers are confronted with increasingly saturated local markets and, therefore, look for possibilities in export, mainly concerning regions around the Mediterranean Sea. In these regions, thermosyphon systems respond to the customers’ demands in an ideal manner. The production of daily hot water is adequate and there is little or no need for space heating. Thermosyphon systems replace the commonly used electrical water heaters.

By reducing the share of electricity used for hot water preparation, thermosyphon systems offer great potential for the displacement of fossil fuels. In 2007, 56 % of the electricity consumed in Europe was produced by combusting fossil fuels (Verband Deutscher Maschinen- und Anlagenbau, 2010). This power generation causes an increasing concentration of air pollutants such as carbon dioxide and nitrogen oxides, which come along with local and global environmental problems.

The utilisation of solar energy and other renewable energy sources such as wind or water does not generate carbon dioxide or other air pollutants (during operation). The solar energy annually available worldwide is about 10,000 times higher than the world’s primary
energy demand (Quaschning, 2009). The availability of (technically usable) solar energy depends on the geographic location. The localised annual amount of available solar energy is nearly constant and varies only slightly interannually. Solar energy offers one major advantage as it is not subject to political pressures from other states or military attacks, as is the case with oil, and, therefore, a secure and reliable energy source with high potential of minimising environmental damage.

In general, thermosyphon solar hot water heaters do not need electricity to be operated. Thermosyphon systems directly convert solar energy into heat, which is stored in a hot water storage tank until it is needed. To ensure a certain hot water temperature in times of adverse weather, either an electrical heating element, which keeps the storage tank at a certain temperature, or a continuous flow heater, attached in between the storage tank and the consumer, can be applied. The heating element will lower, depending on the installed electrical power (Wenxian and Enrong, 1995), the amount of solar supplied hot water. The continuous flow heater has the advantage of a higher amount of solar supplied hot water, as the storage tank temperature is not influenced by this measure (Michaelides and Wilson, 1996).

This thesis focuses on the reduction of supplementary energy for the preparation of hot water. This can be achieved by optimising the additional heating device or by optimising the amount of heat produced by the solar-thermal system. The thesis focuses on the latter. This research is necessary as commercially-available systems are generally of suboptimal design and hence have a lowered potential for reducing greenhouse gas emissions. The manufacturers of these systems are ‘locked in’ to that suboptimal design and not able to optimise such systems, as the necessary knowledge concerning the geometrical and physical dependencies has not been enhanced for many years. A closed development cycle described in this thesis is intended to address this problem. This approach is unique in the solar-thermal sector.

Within the research project, a collaboration between Ingolstadt University of Applied Sciences and the company CitrinSolar Energie- und Umwelttechnik GmbH (CitrinSolar) was established. CitrinSolar is a solar collector and storage tank manufacturer and is interested in thermosyphon systems for the European and Northern African market. During the research project information was continuously exchanged. CitrinSolar provided the thermosyphon system prototype for the system tests.
1.1 Thermosyphon Solar Water Heaters
Thermosyphon solar domestic hot water systems in general consist of three major parts: the solar-thermal collector, the storage tank and the interconnecting piping between collector and storage. This kind of solar-thermal application works on circulation of the collector fluid through natural convection. The key to operation of thermosyphon systems is the location of the storage tank above the collector panels. By connecting the upper outlet of the collector to the top of the storage and the lower part of the storage to the collector inlet, a closed-loop system is created as shown in Figure 1.1.

During hours of sunshine, the collector converts the solar radiation into heat and warms up the heat carrier within the collector. The fluid becomes less dense than the fluid in the storage tank. The fluid, in the system as shown in Figure 1.1 actually tap water, flows into the storage tank through the collector risers and the connecting pipes, while colder water from the storage tank sinks down to the collector inlet. So, a continuous system circulation, at a low flow rate as compared to pumped solar-thermal systems, is created.

![Figure 1.1: Functional Principle of a Thermosyphon System](image)

The flow rate in such a natural circulation thermosyphon system depends on many variables and varies throughout day and year, depending on the absorbed radiation, fluid temperatures, system geometry and many other factors. According to Duffie and Beckman (2006), thermosyphon systems may be described as self-adjusting, with increasing solar gain leading to increasing flow rates through the collector.
There are two main sizes as far as thermosyphon systems are concerned (Brandmayr and Zörner, 2007). On the one hand, there are systems with a collector area of about 2 m² and approximately 180 l of hot water storage for two to four person households. On the other hand, there are systems available with about 300 l of storage volume and a collector area of about 4 m² which meet the requirements of households with about four to six persons. A similar result can be derived from a worldwide manufacturer survey published in 2010, in which 17 out of 47\(^1\) manufacturers had systems with 1.8-2.4 m² collector area combined with a 150-200 l storage tank volume and 9 of them systems with 4.0-4.5 m² collector area and 300 l storage tank volume in their portfolio (Meyer, 2010).

1.2 Technical Weaknesses of State-of-the-Art Thermosyphon Systems
State-of-the-art thermosyphon systems nowadays show a number of unsolved technical problems, which the thesis aims to address:

- Reverse thermosyphoning occurs in times with a hot storage tank and low irradiation, e.g. during night. In case of reverse thermosyphoning, hot water from the storage flows back into the collector. The collector is then working as a heat exchanger to the colder surrounding. Hence, the system additionally cools down during night.

- The hydraulic design of the storage tank in most available systems is rather poor. While taking water from the storage, the stratification within the tank is destroyed by the cold tap water. This has a negative effect on the daily system performance.

- Many systems suffer from overheating problems as high-efficiency collectors designed for pumped systems are simply combined with storage tanks without regard to the collector storage tank ratio. During summer times, these systems are able to reach storage temperatures of above 100 °C, even under typical operation conditions, hence become a danger to users.

- A weakness of many thermosyphon systems is the hydraulic design of the solar circuit and especially of the connecting pipes. In some systems, the return pipe is welded on the absorber sheet. Therefore, the fluid is already preheated before it enters the actual absorber. This slows down the density dependent natural convection

\(^1\) 6 manufacturers did not mention either their collector area or their storage tank volume
of the whole system depending on the fluid temperature in the range of 6–9 % (cf. calculation scheme in Appendix A). Other manufacturers use corrugated pipes that cause a high pressure drop. This type of piping has a negative impact on the developing flow rate.

1.3 Target of the Research Programme
The research described in this thesis aims at the development of a thermosyphon system with a single solar collector and a storage tank volume of about 180 l that outperforms state-of-the-art systems in terms of maximised annual hot water output at reduced production costs based on a closed development cycle approach specified and applied in this thesis.

The objective of testing and simulating a market available reference thermosyphon system is to provide the ability to quantify the optimisation measures developed in this thesis.

The development of a broad simulation-based sensitivity analysis to identify and analyse the design driving factors is a further target of this thesis. The simulation aims at linking geometrical correlations and material properties directly with the annual energy output of the thermosyphon system.

The simulation environment chosen, MATLAB/SIMULINK (The Mathworks, 2011) and an extension called CARNOT (Hafner et al., 1999) offers the framework for the simulation of all kinds of renewable energy systems, but it lacks a double mantle heat exchanger storage tank model. Thus, a storage tank model was developed and verified by data from the monitoring of a reference thermosyphon system.

A further issue addressed is the dependency of the system configuration on different European climatic conditions, namely Ingolstadt, Rome and Malaga. Various publications on thermosyphon system performance and optimisation, like Karaghouli and Alnaser (2001), Sharia et al. (1994) and Budiardjo et al. (2003) refer to a certain location but do not give a hint on the transferability to other locations.

By comparing different materials and their properties the thesis aims at a material selection for the thermosyphon system coming along with a noticeable cost reduction potential at the same durability and efficiency as the reference system. Furthermore, the technical weaknesses described in Chapter 1.2 are addressed.
1 Introduction

The design and construction of a thermosyphon system prototype based on the simulation results, the cost reduction analysis and a literature review is a subsequent target of the thesis.

The purpose of the prototype system is to verify the optimisation measures developed and applied by test data gained with system parts and the whole thermosyphon system.

A further issue addressed within this thesis is aimed at the reducing of greenhouse gas emissions for daily hot water preparation by optimising the amount of heat produced by the solar-thermal system.

1.4 Work Packages of the Programme

Most former investigations in the field of thermosyphon solar hot water heaters were conducted either theoretically, by simulating the system behaviour under steady state conditions, or experimentally by performing in- or outdoor tests. Hence, there is limited validation of system models. This research includes the analysis of thermosyphon systems in theory, transferring mathematical models into simulation, validation of the simulation, the design of a prototype based on simulation results and eventually the testing of the prototype. The validated thermosyphon system model is intended to provide researchers in the field of solar-thermal applications as well as manufacturers with the possibility of adapting their thermosyphon systems to differing climatic conditions and customers’ demands.

The programme of research undertaken consists of five main parts:

I. Comprehensive literature review of research on thermosyphon systems including a market analysis,
II. Functional analysis of thermosyphon systems and formulation of mathematical descriptions,
III. Identification and analysis of design driving component and system parameters using simulation models,
IV. Development, construction and testing of a thermosyphon system following from simulation, including a cost analysis,
V. Validation of the simulation model using measurement data.
2 Comprehensive Market and Literature Review

The market and literature review focuses on possible target markets and their commercial background, gathers trends and gives a résumé on relevant developments in the area of thermosyphon systems.

2.1 Market and Competition Analysis

The aim of the market and competition analysis is to give an overview of the current energy policy and the financial possibilities of the target regions and the market potential for solar-thermal applications. This work is necessary to fix the customers' demands regarding the system development.

2.1.1 Europe

It was the European Union’s (EU) aim to increase the solar-thermal collector area currently installed in its member countries to 100 million m² by 2010 (European Commission, 1997). This corresponds to a total capacity of 70,000 MWth calculated using 0.7 kWth m⁻², a factor introduced by the European Solar Industry Federation (2005). This scenario estimated an annual growth rate of 20 % starting at an installed collector area of 6.5 million m² in 1995.

Towards the end of 2006, the total capacity of all European solar-thermal systems was about 13,454 MWth, which equals an installed collector area of about 19.22 million m² or an average annual European market growth of 7.5 % since 1995 (European Solar Industry Federation, 2007a). As the goals set for 2010 in the EU white book (European Commission, 1997) were not achievable, at the end of 2007 a new target for the year 2020 was declared. The target was defined within the programme ‘Key issues for renewable heat in Europe’ (K4RES-H) under the title ‘Setting verifiable targets for Solar-Thermal’ (European Solar Industry Federation, 2007b). Within this programme two scenarios were identified. The minimum target or “Austria scenario” deals with an installed solar-thermal capacity of 199 kWth/1,000 capita. The second, the ambitious target set by European Solar Industry Federation (ESTIF) (Table 2.1) is the ‘1 m² per capita scenario’. ESTIF pointed out that this ambitious target has to be adjusted to country specific conditions, as not every country is able to reach this goal in 2020.
Table 2.1: Scenarios for the Development of the European Solar-Thermal Market until 2020

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>“Austria scenario” (minimum target)</td>
<td>10.9</td>
<td>91.2</td>
<td>16 %</td>
<td>200 (eq. 0.285 m²)</td>
</tr>
<tr>
<td>“1 m² per capita scenario” (ambitious target)</td>
<td>320.4</td>
<td>31 %</td>
<td>31 %</td>
<td>700 (eq. 1 m²)</td>
</tr>
</tbody>
</table>

Source: European Solar Industry Federation, 2007b

The 2010 market data on the European solar-thermal market indicate that with an installed capacity of 24.1 GWₜₜ, Europe is on its way to reach the “Austria scenario” by 2020 (European Solar Industry Federation, 2011).

Nevertheless, major changes on the European solar-thermal market are ongoing. In 2005, Europe’s three main solar-thermal markets were Germany (47 % market share), Austria (12 %) and Greece (11 %). Together they represented about 70 % of the entire European market (European Solar Industry Federation, 2006).

In 2007, Spain (10 %), France (9 %) and Italy (9 %) showed a significant and continuing market growth (European Solar Industry Federation, 2008) and got ahead of Austria (7 %) and Greece (6 %) in 2008 (European Solar Industry Federation, 2009).

In 2010, Italy (13 %) became the second largest European solar-thermal market just behind Germany (31 %) (European Solar Industry Federation, 2011).

As far as the use of thermosyphon systems is concerned, Italy, Spain and France are very promising for the manufacturers from Germany and Austria seeking export possibilities. Greece, a very large thermosyphon system market, is not relevant for export efforts due to its low prices and high density of local manufacturers.

The Italian market, still only 2/3 of the European annual average of 47.6 kWₜₜ/1,000 capita newly installed capacity, showed a strong growth over the last years. A tax rebate for investments in solar-thermal installations led to this development. The tax break programme is continued until the end of 2011 and, therefore, a good market development can be expected (European Solar Industry Federation, 2011). Besides that, Italy has the ambitious target of being Europe’s largest solar-thermal market by 2020.

The Spanish solar-thermal market profited from a law that came into force in September 2006 which makes it necessary for almost all newly built houses to produce 30–70 % of
the needed hot water by solar energy (European Solar Industry Federation, 2006). With this legal obligation, Spain served as a pioneer within Europe. This law led to a noticeable market growth up to 2008. Spain even became Europe’s second largest market for solar-thermal systems. In 2009, the world financial crisis and the declining construction market lead to a market decrease of 10 % (European Solar Industry Federation, 2010). This trend continued in 2010, therefore, the Spanish solar-thermal market is now close to the 2007 level (European Solar Industry Federation, 2011).

France was able to increase its national market by a factor of 90 in just 10 years. The reason for this development is the so called ‘plan soleil’ (‘sun plan’). Since 2006, 50 % of the costs for a solar-thermal installation are rebated from the incoming tax (European Solar Industry Federation, 2006, 2009). After a peak in 2008, in 2009 and 2010 a market reduction to the level of 2007 took place (European Solar Industry Federation, 2011). While the market penetration with systems for multifamily housing is still increasing, especially the individual applications such as single family housing are declining. This decline is linked to the market opportunities of thermosyphon systems.

In 2009, the market share of newly installed thermosyphon systems in Europe was 30 % (Mauthner and Weiss, 2011), which equalled a newly installed collector area of 1,283,400 m² (European Solar Industry Federation, 2010).

2.1.2 North Africa and Middle East

Moving away from the European solar-thermal market and focusing on the North African market, only limited financial possibilities can be found on the inhabitants’ side by comparing the countries’ Gross Domestic Product (GDP) with Germany. But especially these economically weak countries have a high annual amount of sunshine ideal for the use of solar-thermal applications.

In Tunisia for example, the estimated GDP was only about 7,900 US-$ in 2008 (Germany: 34,800 US-$) (Central Intelligence Agency, 2009). By contrast, Tunisia has an annual amount of sunshine hours of about 2,800–3,200 (Germany: 1,300–2,000) at an ambient temperature of about 20 °C (Germany: 8.2 °C).

These prevailing conditions make all Northern African countries like Tunisia, Algeria, Libya, Morocco and Egypt ideal markets for the most simple solar-thermal water heaters of all, the thermosyphon systems.
In Tunisia, various efforts have been made by the German–Tunisian chamber of commerce and industry, which has noticed the demand for presenting German solar-thermal and photovoltaic technologies in order to create joint ventures and enable German manufacturers to reach new markets (German–Tunisian Chamber of Commerce and Industry, 2005). In 2005, a programme called PROSOL was established by the Tunisian government. This forced an increase of the annual sale of solar-thermal capacity from 4.9 MW\textsubscript{th} in 2004 to 58.8 MW\textsubscript{th} in 2010 (Baccouche, 2011).

In the Middle East, especially, Israel attracts attention due to its high density of thermosyphon solar water heaters. One reason for this has been the legal restraint, introduced in 1980, to install solar-thermal water heaters on newly built houses. Meanwhile solar-thermal applications are accepted and are considered to be a cost-efficient investment. Nowadays four times more solar-thermal systems are voluntarily renewed than are included into new buildings (Pilgard, 2005). The market share of thermosyphon systems newly installed in Israel in 2009 lay at 65 % (Mauthner and Weiss, 2011).

2.1.3 Competition Analysis

In a worldwide competition analysis, the data of more than 50 thermosyphon system manufacturers were collected and evaluated by Brandmayr and Zörner (2007). This analysis was updated and replenished in 2008.

2.1.3.1 Solar Collectors

Thermosyphon systems outside of China commonly use flat-plate collectors (Figure 2.1). Only a few manufacturers have, in most cases, non-pressurized systems with evacuated tube collectors in their product range.

![Collector Types used in Thermosyphon Systems](image)

In contrast to the rest of the world, solely thermosyphon systems with evacuated tubes are sold in China. There are two main reasons for this:
Evacuated tubes are produced at very low cost within China. However, these tubes barely reach the quality and durability of those produced in Europe. Therefore, the export share of Chinese solar-thermal products is still low. In 2009 the export share was only at 5 % (Fawer and Magyar, 2009).

In China, most of the thermosyphon systems sold are non-pressurised systems with only a single hydraulic circuit. In these systems, collector and storage make up one unit as the evacuated tubes are plugged into the storage tank especially perforated for this purpose which, in turn, is easy and low-cost to produce.

Regarding flat-plate collector thermosyphon systems, many manufacturers have several different absorber coatings, according to the climatic and the customers’ demands in their programme. In most cases, the same system is available with a solar black painted absorber or a selective coated absorber. According to Meyer (2009), selective coated absorbers are dominating also in thermosyphon systems, whereas non-selective coated absorbers are only used for low standard systems. Nowadays, most manufacturers of thermosyphon systems use ultrasonic welded absorbers for their high standard products. Together with laser welded absorbers these absorbers represent more than 75 % of the used production technology.

2.1.3.2 Storage Tank

Regardless of the collector type used, horizontally installed storage tanks are dominant (94 % market share), vertically oriented storage tanks are an exception (Figure 2.2). The aesthetic advantage of using a horizontal storage tank is that such systems can be built visually compact (Figure 2.3). The installation of horizontally orientated tanks on a system mounting or on an inclined roof is easier. An essential advantage of a vertical storage tank, however, is the achievement of good temperature stratification. Thus, a higher hot water standard for the users can be achieved.

Meyer (2009) shows a trend towards enamelled steel storage tanks. The market share of stainless steel storage tanks fell from 40 % in 2008 to 30 % in 2009.
2.1.3.3 Hydraulic Circuits

The survey clearly shows the customers’ demand for systems that operate under tap pressure. In most cases, non-pressurised systems come along with direct flow evacuated tube collectors (Figure 2.4).

Distinguishing between one or two circuit systems reveals a trend towards systems with two hydraulic circuits. These systems are the most expensive ones to manufacture. Due to their collector circuit filled with antifreeze, however, they offer one major advantage — they can be used in areas with frost, too. The maintenance of two circuit systems has an
advantage, as possible contaminations, with e.g. lime and particulate material, in tap wa-
ter, can only be found in the storage tank. During the periodical change of the sacrificial anode the storage tank can be cleaned. In one circuit systems, these contaminations nar-
row the pipe cross-section and reduce the system performance (Morrison et al., 1998).

2.1.4 Trends

Summarising the market and competition analysis, on the global thermosyphon market two contradictory trends are observed from the central European point of view.

On the one hand, it is necessary to reduce costs, because e.g. German manufacturers have to leave their local, technically well-engineered and expensive markets and are now confronted with competitors from Australia, Greece, Israel, Spain, Turkey and China.

On the other hand, the target markets are affected by a permanently growing standard of living coming along with an increasing demand for comfort resulting in higher require-
ments on the system performance. Additionally, design and aesthetics are equally be-
coming more and more important (Figure 2.5).

![Figure 2.5: Contradictory Trends on the Thermosyphon Market](image)

2.2 Comprehensive Literature Review

A simple approach to illustrate possible thermosyphon system configurations is shown in Table 2.2. By multiplying the number of solutions in each row, there are theoretically
about 8,750 possibilities to generate more or less efficiently working thermosyphon systems. In fact, this is only a theoretical figure, as some combinations are mutually exclusive, like a system with no additional heat exchanger, water/glycol as heat transfer medium and one circuit.

Table 2.2: Theoretical system configurations

<table>
<thead>
<tr>
<th>Solar Collector(s)</th>
<th>flat-plate collector</th>
<th>polymeric tube or foil collector</th>
<th>evacuated-tube collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glazing</td>
<td>unglazed</td>
<td>glazed</td>
<td>multi-glazed</td>
</tr>
<tr>
<td>Coating</td>
<td>black paint</td>
<td>solar paint</td>
<td>selective coating</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage Tank</th>
<th>horizontal tank</th>
<th>vertical tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrangement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Exchanger Configuration</td>
<td>no additional heat exchanger needed</td>
<td>double mantle heat exchanger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat Transfer Medium</th>
<th>water</th>
<th>water/glycol mixture</th>
<th>phase-change fluid</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hydraulics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Hydraulic Circuits</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>System Pressure</td>
<td>non-pressurised</td>
<td>pressurised</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Layout</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage / Collector Position</td>
<td>storage above collector</td>
<td>collector outlet at the same height as storage top edge</td>
</tr>
</tbody>
</table>

The state-of-the-art systems use either evacuated-tube collectors or flat-plate collectors as energy source, which halves the number of possibilities already.

In the last decade, scientific work on direct flow evacuated tube system testing, development, simulation and optimisation was published exemplarily by Budihardjo et al. (2002, 2003, 2007), Morrison et al. (2004, 2005) and Budihardjo and Morrison (2009). The major disadvantage of direct flow evacuated tube systems is their limited pressure resistance as the evacuated absorber tube is directly plugged into the storage tank (Figure 2.6).
Redpath et al. (2009, 2010) and Redpath (2012) focused on thermosyphon evacuated tube heat-pipe systems with special regard to northern maritime climate. The collectors used for the experimental investigation of the proposed system layout were standard heat pipe solar collectors, combined with an experimental storage tank setup (Figure 2.7). The annual performance was found to be dependent on the position of the condenser. The system with the condenser located inside the fluid manifold outperformed the system using condensers clamped to the manifold. The diurnal performance of heat pipe thermosyphon system also depends on the inclination of the manifold to the horizontal.

The pressure resistance of such a heat pipe thermosyphon system however depends on the design of the manifold. As tap water is directly circulating through the collector manifold, a good water quality is needed to avoid lime and particulate material at the conden-
Chow et al. (2011) experimentally and numerically compared a direct flow with a similar heat pipe evacuated tube system under climatic conditions of Hong Kong (CN). The heat pipe system slightly outperformed the direct flow system. By performing an additional cost analysis and calculating the payback time based on a TRNSYS simulation, the authors found a flat-plate collector thermosyphon system (not tested during the experiments) to be more suitable for Hong Kong, than evacuated tube collector systems. A second comparative study by Huang et al. (2010) favoured flat-plate collectors for the use in the Chinese province Kunming. Their experiments used a direct flow evacuated tube system, a direct flow flat-plate collector system and a two circuit flat-plate collector system filled with anti-freeze in the collector circuit. Under the given test conditions the direct flow flat-plate collector system performed best, but was not recommended due to its low freeze protection. The direct flow evacuated tube collector system offered a better freeze protection but performed 5% below the flat-plate collector system. The double mantle heat exchanger storage flat-plate collector system performed in between the two systems mentioned. This system was found by the authors to be recommended for the use in China.

The main focus of this investigation is on southern European and Northern African customer demands. Therefore, literature on thermosyphon systems with emphasis on systems using flat-plate collectors is reviewed in detail. Flat-plate collector systems with phase-changing heat transfer medium have been exemplarily investigated by Yilmaz (1991), Hussein (2003), Nada et al. (2004), Esen and Esen (2005), Chen et al. (2009), Chien et al. (2011) and Ordaz-Flores et al. (2011). Those thermosyphon systems are reported to work at daily system efficiency comparable or even slightly better to fluid driven thermosyphon systems. The problem coming along with phase change heat transfer mediums like R134a and R407C is the big global warming potential when getting into air. Thermosyphon systems working by evaporating ethanol have to be evacuated to lower the boiling point of ethanol from 78.2 °C at ambient pressure \(p_{\text{abs}} = 1013 \text{ mbar} \) to \(p_{\text{abs}} = 150 \text{ mbar} \) and 34 °C, a pressure measured in a thermosyphon system tested at the University’s testing rig. Those systems however have to be completely preassembled at the manufacturer to control the filling and sealing processes and to ensure proper system functionality.

This thesis focuses on fluid driven flat-plate collector thermosyphon systems with double
mantle heat exchangers, as those systems are found to offer a durable, freeze resistant and good performing solution for the daily hot water preparation. Besides literature on thermosyphon systems, interesting and transferable developments in other fields of (solar-)thermal engineering are also taken into consideration in this thesis.

For annual analyses of solar thermal systems the solar fraction f_{sol} is considered. According to ISO 9488 (1999) the solar fraction is defined as “energy supplied by the solar part of a system divided by the total system load.”

$$f_{\text{sol}} = \frac{Q_{\text{sol}}}{Q_{\text{load}}} \quad (2.1)$$

with

- f_{sol}: Solar Fraction
- Q_{sol}: Solar Energy Supply [kWh]
- Q_{load}: Total System Load [kWh]

Equation (2.1) is valid for solar only and solar preheat systems and also applied in test standard DIN EN 12976-2 (2006). If a backup heating device is included into the solar storage tank the solar fraction is commonly defined according to Duffie and Beckmann (2006) (equation (2.2)). This definition is used for the calculations throughout this thesis.

$$f_{\text{sol}} = \frac{Q_{\text{load}} - Q_{\text{aux}}}{Q_{\text{load}}} \quad (2.2)$$

with

- f_{sol}: Solar Fraction
- Q_{aux}: Auxiliary Energy Supply [kWh]
- Q_{load}: Total System Load [kWh]

According to this definition of f_{sol} all storage tank heat losses are included in the solar fraction. But a certain portion of the occurring heat losses only exist when the storage
tank is kept at a certain temperature by the conventional heating system. Scheller (1985) discussed this problem more in detail.

2.2.1 System Level

Gupta and Garg (1968) observed that the temperature increase between inlet and outlet of a collector in a thermosyphon system is nearly constant during times of sunshine. Nowadays, a selective coated collector in a pumped system is assumed to reach a temperature rise between in- and outlet of about 10 °C, while modern thermosyphon systems work in the range of 10–30 °C depending on the system configuration.

An interesting detail of Gupta and Garg’s investigation is a height variation between collector header and the bottom of the storage tank in the range of -0.3 – +0.6 m. For their experimental trials they used a one-circuit thermosyphon system filled with water. Under clear sky conditions there is nearly no measurable height dependency of the storage tank temperature. But the height differences show a significant influence on the collector flow rates. The higher the storage is located above the collector the higher the flow rate becomes.

Norton and Probert (1983) reported on a thermosyphon system developed by Matushita Electric Works Ltd. (Iwata et al., 1980) that uses two collectors; one flat tilted summer collector and one steeply inclined collector to achieve maximized system efficiency during winter times (Figure 2.8). A special interest of the development was to prevent the system from reverse thermosyphoning during night. The summer collector is fed by the bottom of the storage tank. The hot summer collector outlet re-enters the storage tank also at its bottom and is piped internally to the top of the storage. The winter collector is fed by a limb at the same height as the collector outlet on the right hand side. In order to cool down the limb, as a hot limb reduces the temperature depending thermosyphonic flow rate, the cold water from mains enters the storage tank through the limb.

Späte (1982) compared the daily energy output of two different one-circuit thermosyphon systems, one with a 1.5 m² meander type absorber and a 110 l storage tank volume and the other with two header-riser absorbers (1.75 m² in total) and 200 l storage tank volume. The header-riser type shows with 72.6 l m⁻² h⁻¹ high flow rates through its absorber at a given Irradiation of G = 800 W m⁻² at a low temperature rise of about 5.8 K compared
to 26.0 K temperature rise at a flow rate of 12.7 l m\(^{-2}\) h\(^{-1}\) within the meander type absorber. Späte concluded that the performance of the meander type absorber system, which was always below the performance of the header-riser type absorber, can be improved by changing the collector type.

Scheller (1985) compared thermosyphon and pumped solar-thermal systems under the climatic conditions of Central Europe. He came to the result that there is nearly no difference in the annual solar fraction of thermosyphon systems and pumped systems in case of a one family household use. The influence of the storage tank volume on the annual solar fraction is not distinctive. Hence, it is not necessary to adjust the storage tank volume to the collector area (up to 5 m\(^2\)). From the economic point of view storage volumes of 100-200 l shall be chosen.

Scheller also investigated the influence of the piping within the collector and concluded that a diameter of 10 mm shall be preferred for an optimum system performance. Bigger diameters have neither a positive nor a negative influence. As far as the heat exchanger inside the storage tank, in this case a pipe heat exchanger, is concerned, a surface area of 2 m\(^2\) shall be implemented into the storage. A heat exchanger surface of only 1 m\(^2\)
leads to a reduced solar fraction in the range of 7–10 %. Scheller’s work includes also a design approach to avoid reverse thermosyphoning during night. By piping the collector outlet through the bottom of the storage and the collector inlet through the collector casing, thermal losses of inlet and outlet piping are equal, hence reverse thermosyphoning does not occur as shown in Figure 2.9 case (B).

Gmür (2002) developed a non-return valve with a silicon foil membrane in order to avoid reverse thermosyphoning mechanically (Figure 2.10). This solution, however, introduces an additional flow resistance to the system that can have a negative effect on the thermosyphonic flow rate.
Morrison and Braun (1985) developed a mathematical thermosyphon model for flat-plate absorber systems which is up to now a standard subroutine in TRNSYS (Transient System Simulation Program; Klein et al., 1997), a commonly used simulation tool in solar engineering. The model is validated with measurement data of two different one-loop thermosyphon systems. Using the model, the performance of a pumped and a thermosyphon system is compared. Operated at a daily load volume (M_{load}) to daily collector flow rate (M_{col}) of $M_{\text{col}}/M_{\text{load}} = 1$ (Figure 2.9), both system types show a very similar performance.

Comparing a pumped system at high flow rate to a thermosyphon system at the optimum ratio of $M_{\text{col}}/M_{\text{load}} = 1$, the thermosyphon system outperforms the pumped system due to a better thermal stratification inside the storage tank. Comparing a thermosyphon system
with a vertical tank to one with a horizontal tank, the vertical storage tank system performs at $M_{col}/M_{load} = 1$ by about 6% better than the horizontal system. Both thermosyphon systems had an auxiliary heater in order to keep the upper part of the storage tank at a desired temperature of 63 °C.

Shariah et al. (1994) carried out a computer simulation in order to achieve optimised design parameters for thermosyphon systems with vertical storage tanks under the climatic conditions of Los Angeles. Concerning collector parameters, heights of in- and outlet and also tank volume, a sensitivity analysis using solar fraction and system efficiency as target values was carried out.

In order to improve existing systems tested according to the method given in Standard ISO 9459-2 (ISO, 1995), Belessiotis and Mathioulakis (2001) developed a simple approach to link the main design parameters of a solar only thermosyphon system, which means there is no additional backup heating facility, to the measurement results represented by equation (2.3):

$$Q_{sys} = a_1H + a_2(T_{ini} - T_{amb,mean}) + a_3$$
(2.3)

with

- a_1: Coefficient 1 from Linear Regression [m²]
- a_2: Coefficient 2 from Linear Regression [MJ K⁻¹]
- a_3: Coefficient 3 from Linear Regression [MJ]
- H: Daily Solar Radiation [MJ m⁻²]
- Q_{sys}: System Energy Output under Test Conditions [MJ]
- $T_{amb,mean}$: Mean Ambient Temperature [°C]
- T_{ini}: Tank Temperature Before and After the Test [°C]

First, the instantaneous energy balance of the system including collector and storage tank are drawn setting heat losses in the piping to zero. Afterwards, the equation is integrated over the testing period. The result of this integration is equation (2.4), which is quite similar to equation (2.3):
\[Q_{sys} = s_1 H + s_2 (T_{ini} - T_{amb,mean}) \]

\[s_1 = \frac{k_i \text{mean} A_{col} \eta_0}{1 + \frac{(MC)_{col}}{(MC)_{store}} + \frac{(UA)_{col}}{(UA)_{exch}} + \frac{\Delta t(UA)_{col}}{2(MC)_{store}} + \frac{\Delta t(UA)_{store}}{(MC)_{store}}} \]

\[s_2 = \frac{-2\Delta t(UA)_{col}}{\left(2 + \frac{\Delta t(UA)_{store}}{(MC)_{store}}\right)\left(1 + \frac{(MC)_{col}}{(MC)_{store}} + \frac{(UA)_{col}}{(UA)_{exch}} + \frac{\Delta t(UA)_{col}}{(MC)_{store}}\right)} \]

with

- \(A_{col} \): Collector Aperture Area [m²]
- \(H \): Daily Solar Radiation [MJ m⁻²]
- \(k_i \text{mean} \): Mean Incidence Angle Modifier [-]
- \((MC)_{col} \): Thermal Collector Capacity [J K⁻¹]
- \((MC)_{store} \): Thermal Storage Tank Capacity [J K⁻¹]
- \(Q_{sys} \): System Energy Output [MJ]
- \(s_1 \): Calculated Coefficient 1 [m²]
- \(s_2 \): Calculated Coefficient 2 [MJ K⁻¹]
- \(T_{ini} \): Tank Temperature Before and After the Test [°C]
- \(T_{amb,mean} \): Mean Ambient Temperature [°C]
- \((UA)_{col} \): Collector Heat Loss Coefficient [W K⁻¹]
- \((UA)_{exch} \): Overall Heat Transfer Coefficient of the Heat Exchanger [W K⁻¹]
- \((UA)_{store} \): Tank Heat Loss Coefficient [W K⁻¹]
- \(\Delta t \): Sunlit Period [s]
- \(\eta_0 \): Zero Loss Efficiency [-]

If there is measurement data available, the system behaviour can be parametrically optimised by varying the main physical values of the thermosyphon system. Figure 2.12 exemplarily shows the influence of the heat transfer coefficient on the daily energy output of
the whole system. In the design phase, this approach can also be used to identify technical problems.

Figure 2.12: Variation of Energy Output as a Function of the Heat Transfer Coefficient of the Heat Exchanger (Belessiotis and Mathioulakis, 2001)

In 2006, Wilhelms and Schabbach (2006) carried out a study within the project ‘NEGST’ (New Generation of Solar-Thermal Systems) comparing drain back pumped solar systems with thermosyphon systems for the Southern European market and came to the conclusion that thermosyphon systems outperform drain back systems in terms of energetic amortisation and that both system types are quite similar concerning the annual gained energy.

The various publications on system level are of great value concerning the development of the optimised thermosyphon solar hot water heater. One of the goals is to design a system setup with a daily collector flow to a load volume ratio of more than 1. This can be achieved in several ways, as e.g. the collector flow rate is a function of collector and storage height and the collector layout. However, it is necessary to investigate whether the results of the analysis of one-circuit systems are transferable to a two-circuit thermosyphon water heater or if there are additional effects which have to be taken into consideration. The discussed analytical system optimisation approach can also be used for the sensitivity analysis within the simulation work package. Reverse thermosyphoning apparently can be avoided either by special valves or by a suitable overall system design. Further literature on thermosyphon systems can be found in the bibliography section in Appendix F.
2.2.2 Solar Collector

In general, solar-thermal collectors can be divided into stationary and sun tracking concentrating collectors. According to Kalogirou (2004), there are three types of stationary collectors, compound parabolic collectors, evacuated-tube collectors and flat-plate collectors. Especially flat-plate collectors are part of this survey.

A flat-plate collector consists out of four main components, the glazing, the absorber, the insulation and the casing (Figure 2.13).

![Figure 2.13: Layout of a Flat-Plate Collector (Kalogirou, 2004)](Image)

The glazing has a major influence on the collector efficiency. Frei (1998) published typical transmission factors for glazing materials, as shown in Table 2.3. Ruesch and Brunold (2009) published a work dealing with the long-term stability of different glazing materials. The testing period covered 20 years and two different climates. In particular the tested polymers polyvinylchloride (PVC), polycarbonate (PC), unsaturated polyester (UP) and polyethylene terephthalate (PET) heavily degraded and are, therefore, not applicable to collector glazing.

<table>
<thead>
<tr>
<th>Cover Material</th>
<th>Thickness [mm]</th>
<th>Weight [kg m(^{-2})]</th>
<th>Transmission [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat strengthened glass</td>
<td>4</td>
<td>10</td>
<td>0.84</td>
</tr>
<tr>
<td>Heat strengthened low iron glass</td>
<td>4</td>
<td>10</td>
<td>0.91</td>
</tr>
<tr>
<td>PC</td>
<td>4</td>
<td>4.9</td>
<td>0.80</td>
</tr>
<tr>
<td>PMMA</td>
<td>4</td>
<td>4.8</td>
<td>0.84</td>
</tr>
<tr>
<td>PMMA (double wall sheet)</td>
<td>16</td>
<td>5.0</td>
<td>0.77</td>
</tr>
</tbody>
</table>
After 20 years of exposure, glass (standard ferrous and low iron glass) and polymethylmethacrylate (PMMA) showed only a small deterioration of their transmission characteristics and can be used for solar collectors. PMMA, however, has some disadvantages making this material not suitable for all glazing applications. It is brittle and has a limited temperature range of use. In the area of PC, currently research is being done with UV filters. One promising attempt is to bond a PMMA layer as UV filter onto a PC glazing (Jorgensen et al., 2005).

According to Frei (1998), heat strengthened low iron glass typically has a transmission coefficient of $\tau = 0.91$. This value even can be improved by using anti-reflective layers on the glass. Anti-reflective layers have a refractive index below $n = 1.3$ which lowers the reflection of sunlight passing the glass (Figure 2.14). Calculation schemes for multiple reflections can be found in Duffie and Beckmann (2006), Eicker (2001) and Khartchenko (2004).

![Figure 2.14: Simplified Working Principle of Anti-Reflective Coating Applied on Glass](image)

Gombert et al. (1997) summarised the anti-reflective coating techniques to porous surfaces produced by etching the substrate material, porous sol-gel coatings and sub wavelength surface-relief gratings. Due to its mechanical stability and environmentally friendly production process porous sol-gel coatings are very promising. Porous sol-gel coatings enhance the transmission of light through the glazing by up to 3 % per glass surface, which was proved theoretically and experimentally. The results of this study are in analogy to measurements conducted by Flückinger (2007) resulting in a transmission coefficient of $\tau = 0.96$ for anti-reflective coated solar glass. Furbo and Shah (2003) conducted
a simulation study concerning the influence of anti-reflective collector glazing on the annual system output of a solar domestic hot water system, a solar combi system and a solar thermal heating plant under Danish weather conditions. For the solar domestic hot water systems the annual solar fraction can be enhanced by 10 % starting at a solar fraction of 25 % or 4 % starting at a solar fraction of 60 %. The application of anti-reflective coatings results in a higher transmission of sunlight and a higher energy flux inside the collector. It results in higher stagnation temperatures — this might be a problem when optimising a system already designed for a high annual solar fraction.

In the collector design the material choice for sealants and insulation has to be adapted to these temperatures. The usage of anti-reflective coated glass is coming along with additional costs of approximately 4–6 € per m² (Frei, 2012; Furbo and Shah, 2003²).

The solar absorber is the most intensely investigated part of a flat-plate collector. There are three different absorber types more or less suitable for the use in thermosyphon systems, harp, meander and volumetric absorbers (Figure 2.15).

![Harp Absorber](image1)
![Volumetric Absorber](image2)
![Meander Absorber](image3)

Figure 2.15: Common Flat-Plate Collector Absorber Types

Harp absorbers come along with a low pressure drop, a medium collector efficiency factor F’ (cf. equation (2.23)) and in forced circulated systems an inhomogeneous flow distribution in the riser tubes (Weibrecht et al., 2002).

²2003: 6 USD per m² approx. 5.30 €
The collector efficiency factor of meander type absorbers is comparable to harp absorbers. Uniform flow distribution is achieved as there is only one riser tube, which, however, causes a high pressure drop.

Volumetric absorbers have a very high efficiency factor at a medium or low pressure drop. Depending on the baffle design, a homogenous flow distribution can be realised. One limitation of most of the volumetric absorbers is the reduced pressure resistance. During times of stagnation, modern (pumped) solar-thermal systems reach up to 5 bar (Viessmann-Werke, 2008).

Figure 2.16 shows the occurring pressure drop for different absorber designs measured at Ingolstadt University and published by a test laboratory. The tests were carried out using water at 20 °C. In thermosyphon systems the flow is driven by buoyancy and so the pressure drop of the solar collector has an influence on the developing flow rate that is not to neglect. A further discussion on the flow rate and flow distribution in different solar thermal systems can be found in Chapter 5.1.

![Graph showing the pressure drop per square metre of different absorber types](image)

Figure 2.16: Pressure Drop per Square Metre of Different Absorber Types

Treikauskas (2009) investigated the materials used for solar thermal-absorbers in the last 30 years (Table 2.4). Especially in the 1980s many different materials, such as polymers, steel, engineering fibres, aluminium and copper were used.
Table 2.4: Overview of Absorber Materials (excerpt; Treikauskas, 2009)

<table>
<thead>
<tr>
<th>Material</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Aluminium | + high thermal conductivity
 + low density → low weight
 + easy to process
 + inexpensive | - low corrosion resistance
 - high energy input for primary Al production |
| Steel | + easy to process
 + inexpensive
 + low energy input for steel production | - low thermal conductivity
 - high density → high weight
 - low corrosion resistance |
| Copper | + high thermal conductivity
 + corrosion resistant
 + high durability
 + easy to process | - high density → high weight
 - expensive |
| Polymers | + low density → low weight
 + corrosion resistant
 + low energy input for polymer production | - very low thermal conductivity
 - low temperature durability |

Hermann (2005) mentioned roll bond aluminium solar absorbers produced and sold in the 1970s. Those systems disappeared from the market as corrosion problems appeared. The main reason according to Hermann was atmospheric oxygen inside the fluid channels.

Peuser et al. (2001) reviewed collector designs of the past and mentioned the occurring corrosion problems with aluminium collectors being dependent on the materials used in the solar thermal system, the presence of corrosion inhibitors in the solar fluid and the storing of the collectors beforehand to the installation. While storing the collectors without caps on in- and outlet, moisture and particulate material got into the absorber where the oxidation process started.

Aluminium absorbers were coated with nickel pigmented anodized aluminium known as Sunstrip or Evidal-S coating. Those coatings suffered especially from degradation (oxidation) due to moisture (Figure 2.17, Köhl et al., 1989 and Peuser et al. 2001).
Modern PVD and CVD selective coatings on aluminium, as mentioned later in this Chapter do not show the corrosion problems.

However, well-designed and maintained aluminium collector systems can show a good durability. Hahne (2000) reported about a seasonal storage system with 211 m² collector area for the use in a low temperature heat pump assisted heating system which has been in operation for 15 years. Three different kinds of unglazed aluminium solar collectors (Figure 2.18) were installed. The unglazed non-selective aluminium absorbers have not caused any trouble during operation.

During the 1990s up to the early 2000s absorbers fully made out of copper were predominant, as the copper price was low and copper offered a good corrosion resistance.
To connect absorber and piping, several technologies, such as bonding, clamping, soldering and welding are employed. Nowadays, laser and ultrasonic welding are dominating the market (Treikauskas, 2009).

In 2008 63 % of the solar absorbers produced for the German market used copper sheets. In 2010 already 63 % of the absorber sheets were of aluminium with a predicted increase of further 4 % for 2011 (Meyer, 2011). The reasons for this trend are the corrosion resistance and long-term stability of copper, the reduced material cost for aluminium (Holle, 2011) and the improved manufacturing technology. Epp (2012) showed the price development for copper +154 % and for aluminium +49% in the years from 1995 to 2011 with very volatile copper prices. The trends from the German market can be applied to the rest of Europe.

The corrosion resistant copper pipes are welded to the aluminium absorber sheets. Welding of copper and aluminium comes along with two problems. The first problem are the different temperature expansion coefficients of the metals — 23.8*10⁻⁶ K⁻¹ for aluminium and 16.8*10⁻⁶ K⁻¹ for copper (Beitz and Grote, 1997 and Walcher, 1989) — and the material tensions coming along at absorber temperatures different to the manufacturing temperature. The other problem is the galvanic oxidation between aluminium absorber and copper pipes in combination with moisture inside the collector casing. This can be overcome by realising an adequate dry microclimate inside the collector, which is mainly driven by the water adsorption potential of the collector insulation material, cf. Holck et al. (2003) or Köhl et al. (2007).

Ostermann (1998) investigated the contact corrosion of aluminium and copper in general and recommended not to use this material combination in industrial environment, maritime climate and at the presence of any kind of water or moisture.

Kammer (2009) mentioned aluminium absorber designs using extrusion moulding, brazing or clamping of piping and absorber based on a literature review of the 1970s. The aluminium alloys used are pure aluminium out of the [1xxx] family and alloys out of the [3xxx] family. An interesting aspect of the solar collector designs is an aluminium foil applied on the insulation material working as a diffusion barrier for water and thus moisture inside the solar collector.
Nowadays, manufacturers of aluminium alloys deliver pipes for the use in solar thermal systems belonging to the [3xxx] forgeable alloys. The main alloying element used is manganese (Mn). Those one-phase alloys are not thermosetting (Askeland, 1996) and can be welded and brazed. The chemical composition of a market available solar aluminium alloy is shown in Table 2.5.

Table 2.5: Aluminium Alloy for the Use as Absorber Piping (Standard-Metallwerke, 2012)

<table>
<thead>
<tr>
<th>Element</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Cr</th>
<th>Zn</th>
<th>Ti</th>
<th>Others</th>
<th>Total</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-LIFE SOLAR®</td>
<td>0.5</td>
<td>0.7</td>
<td>0.1</td>
<td>0.7-1.4</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1-0.4</td>
<td>0.05</td>
<td>0.15</td>
<td>Remainder</td>
</tr>
</tbody>
</table>

For the brazing of aluminium tubes zinc free fillers are needed, as zinc causes corrosion at high temperatures. The fillers for the brazing process have to be based on aluminium silicium AlSi. According to De Cardernas (2012) drilling of the manifolds and not punching should be preferred to optimise the joint quality.

Holle (2011) recommends avoiding cutting and drilling of copper and aluminium pipes on the same machine at the same time as copper chips and burr residues might remain in the aluminium pipe.

For a proper corrosion protection the heat transfer fluid has to contain corrosion inhibitors. Heat transfer fluids fulfilling this requirement are available on the market. The use of aluminium absorbers in direct solar thermal (thermosyphon) or freshwater circulating systems is not reasonable as freshwater contains atmospheric oxygen which starts oxidation.

Zinc should not be contained in the whole solar thermal system. Brass and copper fittings should be avoided. At brass fittings dezincification takes place at high temperatures (Beitz and Grote, 1997). Hydro (N.N., 2010) recommends stainless-steel, aluminium or non-metallic fittings and pipes. Salt spray corrosion tests have been successfully performed with solar aluminium alloys (Standard-Metallwerke, 2012 and Hydro, 2012).

Two circuit thermosyphon solar hot water systems offer prevailing conditions for full aluminium absorbers. Those systems are delivered as full packages, so the plumber will not use own material, like fittings and pipes.
As the heat conductivity of [3xxx] aluminium is with 180–280 W m\(^{-1}\) K\(^{-1}\) (Sandner et al., 2006 and Askeland, 1996) lower than the conductivity for copper 385–402 W m\(^{-1}\) K\(^{-1}\) (Sandner et al., 2006 and Askeland, 1996) the material thickness has to be increased from 0.2-0.25 mm to 0.35-0.45 mm to reach the same collector efficiency. Despite the doubling of the material thickness, the density of aluminium — 2,700 kg m\(^{-3}\) — is factor 3 lower than that of copper — 8,930 kg m\(^{-3}\) (Beitz and Grote, 1997) — and still results in a weight reduction.

Sharia et al. (1999) varied the thermal conductivity for a given solar collector in a thermosyphon system in the range of 10–400 W m\(^{-1}\) K\(^{-1}\) using a TRNSYS simulation and incorporating a heating rod in the storage tank. The annual solar fraction increased only by 3 % when switching from aluminium (220 W m\(^{-1}\) K\(^{-1}\)) to a copper absorber (385 W m\(^{-1}\) K\(^{-1}\)) keeping the absorber thickness constant (Figure 2.19). The characteristic collector factors — fin efficiency factor \(F\) (equation (2.24)), collector efficiency factor \(F'\) (equation (2.23)) and heat removal factor \(F_R\) (equation (2.16)) were strongly dependent on the materials' heat conductivity.

De Cardenas (2012) compared the costs for manufacturing a 2 m\(^2\) harp made fully out of copper or aluminium. The raw material and brazing costs for the aluminium only harp were 67 % below the costs for the copper solution.
As the positive facts of full aluminium absorbers are predominant this construction principle is recommended for the thermosyphon system prototype.

In order to improve the energy efficiency of solar-thermal collectors selective coatings were developed. Selective surfaces have a high absorption coefficient α for solar radiation combined with a low emittance ε of long-wave thermal radiation. This combination of absorption and emission values is necessary as 98% of the incoming radiation is at a wavelength below $\lambda = 3 \, \mu m$, while 99% of the radiation emitted by gray or black bodies below 100 °C is above $\lambda = 3 \, \mu m$ (Goswami et al., 2000).

Figure 2.20 shows the solar spectrum outside the earth atmosphere at air mass = 0 (AM0) and after passing the atmosphere at air mass = 2 (AM2). Besides the solar spectrum, the temperature depended blackbody radiation or thermal emission is shown. According to this diagram, an ideal selective coating has unity absorptance beginning at $\lambda = 0.2 \, \mu m$. The wavelength of the shift to unity reflectance depends on the application. For collectors working at an absorber temperature below $T_{abs} = 100 \, ^\circ C$, the switching point shall be in the range of $3 \, \mu m < \lambda < 5 \, \mu m$ (Buhrmann, 1983 and Goswami et al., 2000). The transition for high temperature applications, meaning $T_{abs} > 200 \, ^\circ C$, has to be in the range of $2 \, \mu m < \lambda < 3 \, \mu m$ (Buhrmann, 1983) as highlighted in Figure 2.20.

Figure 2.20: Solar Radiation Before and After Passing the Atmosphere and Blackbody Radiation (Buhrmann, 1983)

Up to the 1970s, non-selective black paint was used to coat the absorber coming along with the negative effects of blackbody radiation. Thereafter, medium selective coatings
like black chrome coatings were developed. Nowadays, black chrome is still used in solar-thermal applications. Figure 2.21 shows the selective characteristics of 3 different black chrome coatings. Beginning at $\lambda = 2 \mu m$, black chrome starts switching from good absorptance to high reflectance.

![Figure 2.21: Selective Characteristics of Different Black Chrome Coatings (Niklasson and Granqvist, 1991)](image)

Corresponding to Drück (2009) black chrome coatings suffer above all from oxidation caused by moisture, oxygen, sulphur dioxide, nitrogen oxide and salt, causing an increasing emission coefficient and a decreasing absorption potential. In order to improve the long-term stability and to further reduce the emissions, new absorber coatings have been developed in the past.

State-of-the-art are highly selective surfaces. Such surfaces are applied using different deposition methods, like Physical Vapour Deposition (PVD) or Chemical Vapour Deposition (CVD) and consist for example of Titan-Nitride-Oxide (TiNOX) or cermets. Drück (2009) compared the efficiency and stagnation temperature of different coatings at $G = 1,000 \text{ W m}^{-2}$, $T_{\text{absorber}} = 50 \degree \text{C}$ and $T_{\text{sky}} = 20 \degree \text{C}$ (Table 2.6).

<table>
<thead>
<tr>
<th>Material</th>
<th>Non Selective Black Paint</th>
<th>Black Chrome</th>
<th>TiNOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha [-]$</td>
<td>0.98</td>
<td>0.96</td>
<td>0.95</td>
</tr>
<tr>
<td>$\epsilon [-]$</td>
<td>0.98</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>$T_{\text{stag}} \degree \text{C}$</td>
<td>125</td>
<td>325</td>
<td>492</td>
</tr>
</tbody>
</table>

Table 2.6: Optical and Thermal Characteristics of Different Coatings (excerpt; Drück, 2009)
In order to minimise the heat losses from the back of flat-plate solar collectors (U_b), insulation in the range of 30–60 mm thickness is integrated into the collector casing. Solar collectors used in Central or Northern Europe are additionally insulated at the casing side in the range of 10–25 mm. The insulation materials used are either mineral wool or a combination of mineral wool and polyurethane foam (Table 2.7). This combination is necessary as the long-term stability of polyurethane is limited to 90 °C. But then, polyurethane is a better insulation material compared to mineral wool. In order to reflect the emitted blackbody radiation from the absorbers backside an aluminium foil can be laminated onto the insulation material.

<table>
<thead>
<tr>
<th>Material</th>
<th>Maximum Temperature [°C]</th>
<th>Heat Conductivity [W m⁻¹ K⁻¹]</th>
<th>Cost [€ m⁻³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foam Glass</td>
<td>600</td>
<td>0.045–0.110</td>
<td>275-400</td>
</tr>
<tr>
<td>Mineral Wool</td>
<td>550-900</td>
<td>0.040–0.080</td>
<td>50-200</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>90</td>
<td>0.025–0.060</td>
<td>125-245</td>
</tr>
<tr>
<td>Coconut Fibre</td>
<td>270</td>
<td>0.040–0.080</td>
<td>50-200</td>
</tr>
</tbody>
</table>

Andoh et al. (2010) compared two nearly identical thermosyphon systems under the conditions of Ivory Coast, Africa. At one collector 50 mm coconut fibre insulation was applied, while the other collector was insulated using a 50 mm glass wool layer. The system using the glass wool insulation performed at an overall efficiency of 58 %, 6 % better than the coconut fibre insulated collector. However, the material costs for coconut fibre under the market conditions of Ivory Coast are 25 % less than those for the glass wool collector. To compare both insulation materials seriously, not only the material costs have to be considered. The energetic difference in combination with the local price per kWh heat has to be calculated over the estimated life cycle of such a water heater. This life cycle analysis shall be relevant for the material choice.

The overall heat loss U_L in a flat-plate collector is the sum of top losses from the transparent glazing U_t, edge losses from the perimeter of the collector casing U_e and losses through the insulated collector bottom U_b (equation (2.7)).
At the collector outer surface both convective and radiative heat losses occur. The convective heat losses h_h are mainly driven by the wind speed, while the radiative losses h_r occur due to temperature differences between the collector and the ambient. Equation (2.12) represents the basic calculation of the backside and edge losses. According to Eicker (2001) the losses $1/h_h + 1/h_r$ can be set to a constant value of $0.04 \, \text{m}^2 \, \text{K} \, \text{W}^{-1}$.

\[
U_{b,e} = \left(\frac{z}{k} + \frac{1}{h_h} + \frac{1}{h_r} \right)^{-1}
\]

(2.8)

with

- $U_{b,e}$: Edge/Bottom Heat Loss $[\text{W} \, \text{m}^{-2} \, \text{K}^{-1}]$
- z: Insulation Thickness $[\text{m}]$
- k: Heat Conductivity Insulation $[\text{W} \, \text{m}^{-1} \, \text{K}^{-1}]$
- h_h: Convective Heat Loss $[\text{W} \, \text{m}^{-2} \, \text{K}^{-1}]$
- h_r: Radiative Heat Loss $[\text{W} \, \text{m}^{-2} \, \text{K}^{-1}]$

The edge losses are referenced to the collector area, as an accurate calculation is complicated (Duffie, Beckmann, 2006). This is possible as the influence of the edge losses in a well-designed system is rather small (equation (2.9)).

\[
U_c = \frac{(UA)_c}{A_{col}}
\]

(2.9)
2 Comprehensive Market and Literature Review

with

\[U_e \]
Edge Heat Loss
\[(UA)_e \]
Edge Loss Coefficient - Area Product
\[A_{col} \]
Collector Area

The top losses can be described as the result of convection and radiation between parallel plates (Duffie, Beckmann, 2006). Under stationary conditions Khartchenko (2004) summarises the heat flux through the glazing being equal to the thermal losses of the absorber in glazing direction. This allows the following equation (2.10).

\[
U_t = \left(\frac{1}{h_b} + \frac{1}{h_r} \right)^{-1}
\] \hspace{1cm} (2.10)

with

\[U_t \]
Top Heat Loss
\[h_b \]
Convective Heat Loss
\[h_r \]
Radiative Heat Loss

Figure 2.22 shows a sectional drawing of a typical flat-plate collector with the occurring heat losses. The distance \(z_{\text{spacing}} \) between absorber and glazing directly influences the top losses and the edge losses of the solar collector, while the insulation thickness \(z_{\text{insulation}} \) only influences the bottom losses.
Vestlund et al. (2009) analysed the thermal performance of gas-filled flat-plate collectors. According to their simulation, the overall heat loss U_L of a sealed inert gas filled solar-thermal collector can be improved by 20% compared to an air filled collector. They found two optimum distances for the height of $z_{spacing}$ independent of the gas used. The first is in the range of $z_{spacing} = 3–9$ mm followed by a local maximum of heat losses. The other minimum can be found in the range of $z_{spacing} = 30–45$ mm. As the optimum distance between absorber and glass directly depends on the collector slope γ and the (design point) fluid temperature, the distance $z_{spacing}$ has to be calculated for the specific case of operation. The short distance minimum of an air filled solar collector is found to vary from $z_{spacing} = 7.5$ mm at $\gamma = 15^\circ$ and $T_{fluid} = 100^\circ C$ to $z_{spacing} = 9.2$ mm at $\gamma = 60^\circ$ and $T_{fluid} = 25^\circ C$.

Figure 2.22: Sectional Drawing of a Typical Flat-Plate Collector
The efficiency of a (glazed) flat-plate collector can be described as the ratio of available solar energy at the collector glazing and the usable outgoing heat flux (equation (2.11)).

$$\eta = \frac{\dot{Q}_{use}}{G A_{abs} c} = \frac{\dot{m} c (T_{out} - T_{in})}{A_{abs} G}$$ \hspace{1cm} (2.11)

with

- A_{abs}: Absorber Area [m²]
- c: Heat Capacity Fluid [J kg⁻¹ K⁻¹]
- G: Solar Irradiation [W m⁻²]
- \dot{m}: Mass Flow Rate [kg s⁻¹]
- T_{in}, T_{out}: Collector In- and Outlet Temperature [°C]
- \dot{Q}_{use}: Usable Energy [W]
- η: Collector Efficiency [-]

The usable heat flux is given by the energy available after passing the glazing and the absorbers (selective) surface minus the occurring overall collector heat losses U_L caused by temperature differences (equation (2.12) and (2.13)).
\[
\dot{Q}_{use} = (\tau\alpha)_{eff} A_{abs} G - U_L (T_{abs} - T_{amb}) A_{abs}
\] (2.12)

\[
\eta = \frac{(\tau\alpha)_{eff} - \frac{U_L (T_{abs} - T_{amb})}{G}}{\eta_0}
\] (2.13)

with

- \(A_{abs}\) Absorber Area \([m^2]\)
- \(G\) Solar Irradiation \([W \, m^{-2}]\)
- \(T_{abs}\) Absorber Temperature \([^\circ C]\)
- \(T_{amb}\) Ambient Temperature \([^\circ C]\)
- \(U_L\) Overall Collector Heat Losses \([W \, m^{-2} \, K^{-1}]\)
- \(\eta_0\) Zero Loss Efficiency [-]
- \(\eta\) Collector Efficiency [-]
- \((\tau\alpha)_{eff}\) Effective Transmission/Absorption Product [-]

(optical characteristics of the transparent cover and the absorber surface)

The zero loss efficiency \(\eta_0\) is the efficiency of the collector, if the mean fluid temperature or the inlet fluid temperature (depending on the selected collector equation) is equal to the ambient air temperature (ISO 9488, 1999).

For multiple reflections between absorber and transparent cover, the effective transmission absorption product can be summarised to equation (2.14) (Duffie and Beckmann, 2006, Eicker, 2001).

\[
(\tau\alpha)_{eff} = \frac{\tau\alpha}{1 - (1 - \alpha)\rho_{glass}}
\] (2.14)
According to Duffie and Beckmann (2006) and Khartchenko (2004) typical values of \((\tau\alpha)_{\text{eff}}\) for single glazed solar collectors are 1–2% higher than the values of \((\tau\alpha)\).

By introducing a correction factor, the heat removal factor \(F_R\) (Kalogirou, 2004), the average absorber temperature \(T_{\text{abs}}\) can be replaced by the collector inlet temperature \(T_{\text{in}}\) (equation (2.15) and (2.16)).

\[
\dot{Q}_{\text{use}} = (\tau\alpha)_{\text{eff}} A_{\text{abs}} G - U_L (T_{\text{in}} - T_{\text{amb}}) A_{\text{abs}} F_R
\]

(2.15)

\[
F_R = \frac{\dot{m} c}{A_{\text{abs}} U_L} \left(1 - \exp \left[- \frac{U_L F' A_{\text{abs}}}{\dot{m} c} \right] \right)
\]

(2.16)

with

\(A_{\text{abs}}\) Absorber Area [m²]

\(c\) Heat Capacity Fluid [J kg⁻¹ K⁻¹]

\(F_R\) Heat Removal Factor [-]

\(F'\) Collector Efficiency Factor (equation (2.23)) [-]

\(G\) Solar Irradiation [W m⁻²]

\(\dot{m}\) Mass Flow Rate [kg s⁻¹]

\(U_L\) Overall Collector Heat Losses [W m⁻² K⁻¹]

\(\dot{Q}_{\text{use}}\) Usable Energy [W]

\(T_{\text{amb}}\) Ambient Temperature [°C]

\(T_{\text{in}}\) Collector Inlet Temperature [°C]

\((\tau\alpha)_{\text{eff}}\) Effective Transmission/Absorption Product [-]
The heat removal factor F_R can be considered as the ratio of heat actually delivered to that if the collector plate were at a uniform temperature equal to the inlet temperature (Kalogirou, 2004).

Finally the collector efficiency can be written as shown in equation (2.17)

$$\eta = F_R (\tau \alpha)_{eff} - F_R U_L \frac{(T_{in} - T_{amb})}{G}$$

(2.17)

with

- F_R: Heat Removal Factor [-]
- G: Solar Irradiation [W m$^{-2}$]
- U_L: Overall Collector Heat Losses [W m$^{-2}$ K$^{-1}$]
- T_{amb}: Ambient Temperature [°C]
- T_{in}: Collector Inlet Temperature [°C]
- $(\tau \alpha)_{eff}$: Effective Transmission/Absorption Product [-]
- η: Collector Efficiency [-]

Equation (2.17) is known as “Hottel-Whillier-Bliss-Equation” and can be used for designing solar collectors (Goswami et al., 2000, Khartchenko, 2004).

As the absorber temperature under normal operation and in collector tests is not equal to the fluid inlet temperature, the heat removal factor F_R is replaced by the collector efficiency factor F' (Khartchenko, 2004), cf. equation (2.23). The inlet temperature T_{in} is replaced by the collector mean temperature T_{mean} (equation (2.18)). The formulation for the (linear) instantaneous collector efficiency results finally in equation (2.19).

$$T_{mean} = \frac{T_{in} + T_{out}}{2}$$

(2.18)

$$\eta = F'(\tau \alpha)_{eff} - F' U_L \frac{(T_{mean} - T_{amb})}{G}$$

(2.19)
with

\[F' \] Collector Efficiency Factor
\[G_{\text{col}} \] Irradiation into the Collector Plane
\[T_{\text{in}}, T_{\text{out}} \] Collector In- and Outlet Temperature
\[T_{\text{mean}} \] Mean Collector Temperature
\[T_{\text{amb}} \] Ambient Temperature
\[U_{L} \] Overall Collector Heat Loss Coefficient
\[(\tau \alpha)_{\text{eff}} \] Effective Transmission/Absorption Product

Cooper and Dunkle (1981) assume the overall loss coefficient to be linear temperature dependent and therefore replace \(F'U_{L} \) by equation (2.20) resulting in equation (2.21).

\[
F'U_{L} = a + b(T_{\text{mean}} - T_{\text{amb}}) \tag{2.20}
\]

\[
\eta = F'(\tau \alpha)_{\text{eff}} - a \frac{(T_{\text{mean}} - T_{\text{amb}})}{G} - b \left(\frac{T_{\text{mean}} - T_{\text{amb}}}{G}\right)^2 \tag{2.21}
\]

with

\[a \] Constant Heat Loss Coefficient
\[b \] Temperature Dependent Heat Loss Coeff.
\[F' \] Collector Efficiency Factor
\[T_{\text{mean}} \] Mean Collector Temperature
\[T_{\text{amb}} \] Ambient Temperature
\[U_{L} \] Overall Collector Heat Loss Coefficient
\[\eta \] Collector Efficiency
\[(\tau \alpha)_{\text{eff}} \] Effective Transmission/Absorption Product

The equation (2.21) is also used for the steady state efficiency curve calculation according to DIN EN 12975-2 (2006). According to Duffie and Beckmann (2006) \(F'(\tau \alpha) \) is used as zero loss value \(\eta_0 \), while \(a \) and \(b \) are replaced by \(a_1 \) and \(a_2 \) in standard DIN En 12975-2 (2006). The efficiency curve according to the test standard is always plotted against the reduced temperature \(T_{\text{red}} \) (equation (2.22)).
2 Comprehensive Market and Literature Review

\[T_{\text{red}} = \frac{(T_{\text{mean}} - T_{\text{amb}})}{G} \]

(2.22)

with

- \(G \)
 Solar Irradiation
 \([\text{W m}^{-2}]\)

- \(T_{\text{mean}} \)
 Mean Collector Temperature
 \([\text{°C}]\)

- \(T_{\text{amb}} \)
 Ambient Temperature
 \([\text{°C}]\)

- \(T_{\text{red}} \)
 Reduced Temperature
 \([\text{K m}^{2} \text{ W}^{-1}]\)

Figure 2.24 visualises the effect of absorption and emission coefficient on the collector efficiency curve measured according to DIN EN 12975-2 (2006). A decrease of the absorption results in a parallel offset of the efficiency curve. An increasing emission leads to a sharp decline of the collector efficiency curve.

![Figure 2.24: Influence of the Selective Coating on the Collector Efficiency](image)

The collector efficiency factor \(F' \), already introduced in equations (2.16), (2.19) and (2.21) is an indicator for the performance of the absorber design (Goswami et al., 2000). In Duffie and Beckmann (2006), the collector efficiency \(F' \) is summarised to be strongly dependent on the heat loss coefficient \(U_L \) and the heat transfer coefficient \(h_{\text{fin}} \), the dependency of \(F' \) on the collector temperature is not that important.

The collector efficiency factor is calculated according to equation (2.23):
\[
F' = \frac{1}{U_L} \left[\frac{1}{U_L [d_{outer} + F(W - d_{outer})]} + \frac{1}{C_b} + \frac{1}{\pi d_{inner} h_{fin}} \right] (2.23)
\]

\[
F = \frac{\tanh \left(\frac{m(W - d_{outer})}{2} \right)}{m(W - d_{outer})} \frac{m(W - d_{outer})}{2} (2.24)
\]

\[
m = \frac{U_L}{\sqrt{k_{abs} z_{abs}}} (2.25)
\]

with

- \(C_b\): Bond Conductance \([\text{W m}^{-1} \text{K}^{-1}]\)
- \(d_{inner}\): Inner Tube Diameter \([\text{m}]\)
- \(d_{outer}\): Outer Tube Diameter \([\text{m}]\)
- \(F\): Fin Efficiency \([-\text{]}\)
- \(F'\): Collector Efficiency Factor \([-\text{]}\)
- \(h_{fin}\): Convective Heat Transfer Coefficient Inside Tubes \([\text{W m}^{-2} \text{K}^{-1}]\)
- \(k_{abs}\): Heat Conductivity of the Absorber \([\text{W m}^{-1} \text{K}^{-1}]\)
- \(U_L\): Overall Collector Heat Loss Coefficient \([\text{W m}^{-2} \text{K}^{-1}]\)
- \(m\): Constant \([\text{m}]\)
- \(W\): Distance between Riser Tubes \([\text{m}]\)
- \(z_{abs}\): Absorber Thickness \([\text{m}]\)
Figure 2.25: Sketch of an Absorber Fin for the Calculation of F

The convective heat transfer coefficient h within pipes can be calculated for laminar flow distribution using equations (2.26) and (2.27) (Drück, 2009); it is assumed that the heat transfer h over the whole pipe surface equals h_{fin}:

$$h = \frac{Nu \kappa}{d_{\text{inner}}}$$ \hspace{1cm} (2.26)

$$Nu = Nu_\infty + \frac{0.19}{1 + 0.117} \left(\frac{\text{RePr} \frac{d_{\text{inner}}}{l_{\text{pipe}}}}{1000} \right)^{0.467} \left(\frac{\mu_{\text{mean}}}{\mu_{\text{wall}}} \right)^{0.14}$$ \hspace{1cm} for $10^4 > \text{RePr} \frac{d_{\text{inner}}}{l_{\text{pipe}}} > 10^3$ \hspace{1cm} (2.27)

$\dot{q}_{\text{wall}} = \text{const.} \rightarrow Nu_\infty = 4.36$

$T_{\text{wall}} = \text{const.} \rightarrow Nu_\infty = 3.65$

with

- d_{inner}: Inner Tube Diameter [m]
- h: Convective Heat Transfer Coefficient [W m$^{-2}$ K$^{-1}$]
- l_{pipe}: Tube Length [m]
- Nu, Nu_∞: Nusselt Number (Dimensionless Heat Transfer Coefficient)
- Pr: Prandtl Number [-]
- \dot{q}_{wall}: Energy Flux along the Pipe [W]
- Re: Reynolds Number [-]
- T_{wall}: Pipe Wall Temperature [°C]
- κ: Heat Conductivity of the Fluid [W m$^{-1}$ K$^{-1}$]
- $\mu_{\text{mean}}, \mu_{\text{wall}}$: Dynamic Viscosity of the Fluid inside the Pipe [kg m$^{-1}$ s$^{-1}$]
Duffie and Beckmann (2006) assume the contact breadth of fin and pipe to be equal to the outer fin diameter, while Eisenmann (2003) enhanced the equation by calculating only a reduced contact breadth equal to the welding line. For further calculations the basic equations by Duffie, Beckmann (2006) are considered.

For asymmetrical fins the fin efficiency is calculated by Hermann (2005) by dividing the fin into a left and a right part of breadth W_L and W_R. Asymmetric fins in harp absorbers often can be found at last pipe on the left and or right absorber side. The collector efficiency factor F' results in equation

$$W = W_L + W_R$$ \hspace{2cm} (2.28)

$$F_{as} = \frac{\tanh(m(W_R - \frac{d_{outer}}{2})) + \tanh(m(W_L - \frac{d_{outer}}{2}))}{m(W_L + W_R - d_{outer})}$$ \hspace{2cm} (2.29)

with

- C_b: Bond Conductance \hspace{1cm} [W m$^{-1}$ K$^{-1}$]
- d_{inner}: Inner Tube Diameter \hspace{1cm} [m]
- d_{outer}: Outer Tube Diameter \hspace{1cm} [m]
- F_{as}: Fin Efficiency for the Asymmetric Fin \hspace{1cm} [-]
- m: Constant \hspace{1cm} [m]
- $W_{L,R}$: Left, Right Side Fin Width \hspace{1cm} [m]
- W: Distance between Riser Tubes \hspace{1cm} [m]
The solution for the collector efficiency factor of an asymmetric absorber fin is represented by equation (2.40).

$$F_{as} = \frac{1}{U_L} \left(\frac{1}{(W_L + W_R)} \left[\frac{1}{U_L [d_{inner} + F_{as} (W_L + W_R - d_{outer})]} \right] + \frac{1}{C_b \cdot \pi d_{inner} h_{fin}} \right)$$ \hspace{1cm} (2.30)$$

with

C_b Bond Conductance $[\text{W m}^{-1} \text{K}^{-1}]$

d_{inner} Inner Tube Diameter $[\text{m}]$

d_{outer} Outer Tube Diameter $[\text{m}]$

F_{as} Fin Efficiency for the Asymmetric Fin $[-]$

F'_{as} Collector Efficiency Factor at the Asymmetric Fin $[-]$

h_{fin} Convective Heat Transfer Coefficient Inside Tubes $[\text{W m}^{-2} \text{K}^{-1}]$

k_{abs} Heat Conductivity of the Absorber $[\text{W m}^{-1} \text{K}^{-1}]$

U_L Overall Collector Heat Loss Coefficient $[\text{W m}^{-2} \text{K}^{-1}]$

$W_{L,R}$ Left, Right Side Fin Width $[\text{m}]$

The influence of asymmetric absorber fins on the overall collector efficiency factor is weighted according to the affected absorber surface (equation (2.41)).
\[F' = \sum_{n} \frac{A_n}{A_{abs}} F'_n \] \hspace{1cm} (2.31)

with

- \(A_n \): Fin Area [m²]
- \(A_{abs} \): Absorber Area [m²]
- \(F'_n \): Collector Efficiency Factor at Fin n [-]
- \(F' \): Overall Collector Efficiency Factor [-]

The given theory on the solar collector design is brought into a MATLAB (The Mathworks, 2011) script to effectively be used in the collector design phase.

Besides a mathematical calculation of the collector efficiency, there are several measurement approaches. Frey et al. (1998) conducted collector efficiency measurements on 21 different samples of absorber fins. The measurements reflect the dependency of \(F' \) on the flow rate, the fin width and the bonding. Table 2.8 shows an excerpt of the test results.

Table 2.8: Excerpt of the Collector Efficiency Measurements Conducted by Frey et al. (1998)

<table>
<thead>
<tr>
<th>Sample 4</th>
<th>Sample 8</th>
<th>Sample 15</th>
<th>Sample 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fin Dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>145 mm</td>
<td>150 mm</td>
<td>80 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.22 mm</td>
<td>0.21 mm</td>
<td>0.21 mm</td>
</tr>
<tr>
<td>Material</td>
<td>Copper</td>
<td>Copper</td>
<td>Copper</td>
</tr>
<tr>
<td>Piping</td>
<td>9.6 x 0.5 mm</td>
<td>8.0 x 0.4 mm</td>
<td>8.0 x 0.5 mm</td>
</tr>
<tr>
<td>Bonding</td>
<td>Piping Rolled-up</td>
<td>Ultrasonic Welded</td>
<td>Ultrasonic Welded</td>
</tr>
<tr>
<td>(F'_{20 \text{ l h}^{-1}})</td>
<td>0.86</td>
<td>0.81</td>
<td>0.92</td>
</tr>
<tr>
<td>(F'_{40 \text{ l h}^{-1}})</td>
<td>0.88</td>
<td>0.84</td>
<td>0.95</td>
</tr>
<tr>
<td>(F'_{60 \text{ l h}^{-1}})</td>
<td>0.89</td>
<td>0.86</td>
<td>0.97</td>
</tr>
</tbody>
</table>
According to a design nomogram developed by Eisenmann et al. (2004), it is possible to achieve material savings of 20–25% compared to the state-of-the-art at a constant collector efficiency factor of at least 0.9.

Besides the sheet-pipe configuration of solar collectors, there are several different possible designs of the absorber. Bliss (1959) described a method to calculate the collector efficiency factor for a volumetric absorber with only one rectangular duct as seen in equation (2.32):

$$F' = \frac{h_{fin}}{h_{fin} + U_L}$$ \hspace{1cm} (2.32)

with

- F': Collector Efficiency Factor \hspace{1cm} [-]
- h_{fin}: Heat Transfer Coefficient Inside the Absorber \hspace{1cm} [W m$^{-2}$ K$^{-1}$]
- U_L: Heat Loss Coefficient \hspace{1cm} [W m$^{-2}$ K$^{-1}$]

A volumetric absorber has the advantage of reduced thermal resistances, e.g. bond resistance. One major disadvantage of this kind of design is the limited permitted system pressure in order to avoid a deformation the absorber plate.

Treikauskas (2005) compared absorbers with corrugated pattern, corrugated sheet absorbers, metal-matrix-absorbers and roll-bond absorbers to state-of-the-art sheet-pipe absorbers with respect to collector efficiency factor and pressure loss. It can be concluded that alternative structural collector shapes outperform the commonly used sheet-pipe absorbers, but have to be reinvestigated whether an uniform flow distribution is achievable (Table 2.9).
Concerning sheet-pipe absorbers, several attempts have been made to describe the pressure losses inside the solar collector analytically. From the hydraulic point of view, a harp absorber is a network consisting of flow resistances. Kikas (1995) described this hydraulic network precisely for laminar flow conditions. For combined laminar and turbulent conditions (which are often found in solar collectors), other approaches have to be taken into consideration. The easiest and also the most imprecise attempt is to understand the risers as a resistance network of parallel flow resistances with each the same resistance (Figure 2.27). The total resistance in the risers is summarised as shown in equation (2.33):

$$\frac{1}{\Delta p_{\text{riser}}} = \sum_{n} \frac{1}{\Delta p_{\text{riser},n}}$$ \hspace{1cm} (2.33)

with

- \(n\) \hspace{1cm} Number of Risers \hspace{1cm} [-]
- \(\Delta p_{\text{riser}}\) \hspace{1cm} Total Pressure Loss in the Risers \hspace{1cm} [Pa]

Table 2.9: Collector Efficiency and Pressure Losses of Different Absorber Types (Treikauskas, 2005)

<table>
<thead>
<tr>
<th>State-of-the-Art Header-Riser and Meander Absorber</th>
<th>Absorber with Corrugated Pattern</th>
<th>Corrugated Sheet Absorber</th>
<th>Metal-Matrix-Absorber</th>
<th>Roll-Bond-Absorber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity of Heat Carrier [l]</td>
<td>1.0–1.5</td>
<td>4.8</td>
<td>6.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Heat Capacity [kJ K(^{-1})]</td>
<td>8.8</td>
<td>23.7</td>
<td>22.0</td>
<td>23.9</td>
</tr>
</tbody>
</table>

Thermodynamic Attributes

| Collector Efficiency Factor [-] | 0.88–0.95 | 0.98–0.99 | 0.98–0.99 | 0.98–0.99 | 0.97 |

Fluid Mechanic Attributes

| Pressure Drop [mbar] at 2 l min\(^{-1}\) (~120 kg h\(^{-1}\)) | 10–200 | 3.5 | 24.6 | — | 53.0 |
For the pressure drop in the headers, only 1 header length is taken into account. This model neglects pressure losses caused by branches and inlet and outlet losses. Assuming a uniform flow distribution, a physically incorrect approach (Weitbrecht et al., 2002), the pressure losses simply consist of header and riser losses, as shown in equation (2.34). However, Weitbrecht did not state any physical explanation for that fact.

\[\Delta p_{\text{col}} = \Delta p_{\text{header}} + \Delta p_{\text{riser}} \]
(2.34)

with

- \(\Delta p_{\text{col}} \) Total Pressure Drop in the Collector [Pa]
- \(\Delta p_{\text{header}} \) Pressure Drop in the Header [Pa]
- \(\Delta p_{\text{riser}} \) Summarised Pressure Drop of the Risers [Pa]

For the calculation of the Reynolds Number according to equation (2.35), the mass flow rate and the velocity in the risers has to be divided by the number of risers \(n \) (equation (2.36)).

\[Re = \frac{v_{\text{fluid}} \cdot d_{\text{inner}} \cdot \rho}{\mu_{\text{fluid}}} \]
(2.35)
2 Comprehensive Market and Literature Review

with

\[d_{\text{inner}} \quad \text{Inner Pipe Diameter} \quad [\text{m}] \]

\(\text{Re} \quad \text{Reynolds Number} \quad [-] \)

\(v_{\text{fluid}} \quad \text{Fluid Velocity} \quad [\text{m s}^{-1}] \)

\(\rho_{\text{fluid}} \quad \text{Fluid Density} \quad [\text{kg m}^{-3}] \)

\(\mu_{\text{fluid}} \quad \text{Dynamic Fluid Viscosity} \quad [\text{kg m}^{-1} \text{s}^{-2}] \)

\[\dot{m}_{\text{riser}} = \frac{\dot{m}_{\text{col}}}{n_{\text{riser}}} \quad (2.36) \]

with

\(\dot{m}_{\text{col}} \quad \text{Collector Mass Flow Rate} \quad [\text{kg s}^{-1}] \)

\(\dot{m}_{\text{riser}} \quad \text{Mass Flow Rate through One Riser} \quad [\text{kg s}^{-1}] \)

\(n_{\text{riser}} \quad \text{Number of Risers} \quad [-] \)

This simple approach does not meet the needed accuracy for the development of a collector piping for thermosyphon systems. A more precise attempt to describe the pressure losses is illustrated by Späte (1982). Späte converts the riser diameter \(d_{\text{riser}} \) into an equivalent pipe length with the header diameter \(d_{\text{header}} \) taking also the number of risers into account (Figure 2.28):

![Figure 2.28: Approach of Converting Real Pipe Length into an Equivalent Pipe Length (Späte, 1982)](image)

\[l_{\text{eq}} = l_{\text{riser}} \frac{d_{\text{inner, header}}^4}{n_{\text{riser}} d_{\text{inner, riser}}^3} \quad (2.37) \]
with

\[d_{\text{inner,header}}, d_{\text{inner,riser}} \]

Inner Header; Riser Diameter [m]

\[l_{\text{eq}} \]

Equivalent Pipe Length [m]

\[l_{\text{riser}} \]

Riser Length [m]

\[n_{\text{riser}} \]

Number of Risers [-]

Additionally, the friction coefficients for the branches and tees are calculated (equation (2.38)):

\[l_{\text{branch}} = \sum_{n=1}^{n_{\text{branch}}} \frac{\zeta_n d_{\text{inner,n}}}{f_n} \]

(2.38)

with

\[d_{\text{inner,n}} \]

Diameter of Branch n [m]

\[f_n \]

Friction Factor (Velocity depended) [-]

\[l_{\text{branch}} \]

Equivalent length of Pressure Drop caused by branches [m]

\[n_{\text{branch}} \]

Number of Branches [-]

\[\zeta_n \]

Friction Coefficient of Branch n [-]

Adding the header length, the total length of the equivalent pipe is represented by equation (2.39):

\[l_{\text{sum}} = l_{\text{eq}} + l_{\text{branch}} + l_{\text{header}} \]

(2.39)

with

\[l_{\text{branch}} \]

Equivalent length of Pressure Drop caused by Branches [m]

\[l_{\text{eq}} \]

Equivalent Riser Length [m]

\[l_{\text{header}} \]

Header Length [m]

\[l_{\text{sum}} \]

Total Equivalent Length of Collector Hydraulics [m]
As Späte assumes the flow to be laminar within the whole collector, the overall pressure drop is calculated according to equation (2.39) using l_{sum} as pipe length.

Scheller (1985) improved this approach by adding a correction factor investigated by Langhaar (1942). This factor takes turbulence into account caused by bends and tees (equation (2.40)):

$$x_{La} = 1 + \frac{0.038}{\left(\frac{l_{\text{pipe}}}{d_{\text{inner}} \cdot \text{Re}} \right)^{0.56}}$$ \hspace{1cm} (2.40)

with

- d_{inner}: Inner Tube Diameter [m]
- l_{pipe}: Pipe Length [m]
- Re: Reynolds Number [-]
- x_{La}: Langhaar Factor [-]

For a correct solution of Scheller’s approach, pressure losses in risers and headers have to be calculated separately when laminar and turbulent conditions are coexistent (equation (2.41)):

$$\Delta p_{\text{col}} = x_{La,\text{header}} f_{\text{header}} \frac{l_{\text{header}}}{d_{\text{inner,header}}} \frac{\rho v_{\text{header}}^2}{2} + x_{La,\text{riser}} f_{\text{riser}} \frac{l_{eq} + l_{\text{branch}}}{d_{\text{inner,header}}} \frac{\rho v_{\text{riser}}^2}{2}$$ \hspace{1cm} (2.41)

with

- $d_{\text{inner,header}}$: Inner Header Diameter [m]
- $f_{\text{header}}, f_{\text{riser}}$: Friction Factor (Velocity depended) [-]
- l_{branch}: Equivalent length of Pressure Drop caused by branches [m]
- l_{eq}: Equivalent Riser Length [m]
- l_{header}: Header Length [m]
- v_{header}: Velocity in the Header [m s$^{-1}$]
- $x_{La,\text{header}}, x_{La,\text{riser}}$: Langhaar Factor for Header and Riser [-]
There are many possibilities to design a lightweight solar collector sufficient for ther-
mosyphon systems by reducing material or by choosing a polymeric cover material. Be-
sides the collector efficiency factor, the coating of the collector has a major influence on
the collector efficiency. As the absorber’s pressure drop also is a design driving factor,
meander type absorbers are only suitable for thermosyphon systems if a piping diameter
above market available piping dimensions of 8–12 mm is chosen. As the diameter direct-
ly influences the cost of the absorber the most suitable solution is a harp design.

2.2.3 Storage Tank

There are different types of storage tanks described in the literature. Nowadays, the most
common storage type is a well-insulated horizontal double mantle heat exchanger stor-
ge tank. Tube heat exchangers inside vertical and horizontal storage tanks were studied
in the 1980s. These types of heat exchangers can provide good heat exchange, but are
difficult to design taking the thermosyphonic principle into account (Morrison et al., 1999).

Horizontal tanks lead to visually compact systems, but suffer from a reduced stratification
when compared to vertical tanks. Khalifa and Mehdi (1999) conducted an experimental
and a numerical study on a thermosyphon system with a horizontal 170 l storage tank. They
proved that the heat flow inside the storage tank can be considered one-
dimensional. Axial and radial temperature gradients were negligible compared to the ver-
tical temperature gradient. Even under cloudy conditions they were able to measure a
good stratification inside the storage tank.

Morrison et al. (1998) studied the flow distribution inside a horizontal double mantle heat
exchanger storage tank experimentally and numerically. Heat exchanger in- and outlet
port were located at the storage tank bottom. The performance of the heat exchanger
was found to be dependent on the port location, the inlet temperature in relation to the
top temperature of the water and the velocity of the inlet jet. A storage tank simulated
with ports as close as possible to the double mantle end (welding line) outperformed a
system with ports moved towards the inner of the double mantle (Figure 2.29). In the lat-
ter a recirculation zone developed causing energy losses. This recirculation zone caused
a negative heat flux and thus a destruction of the thermal stratification inside the hot water section. At inlet temperatures close to the top temperature of the storage tank water and at high inlet velocity the majority of the heat transfer was found to be close to the bottom. This study was closed with the recommendation to put the inlet port to a higher position in the annulus and to provide the inlet jet rather parallel than perpendicular to the heat exchanger spacing. In a further publication Morrison et al. (1999) investigated the advantages and disadvantages of the heat exchanger entry position of double mantle heat exchanger storages (Figure 2.29). Most of the manufacturers were found to use a bottom entry, as these storages are more suitable for systems equipped with an in-tank backup heater.

At low irradiation conditions, these systems will have a better circulation compared to the top entry systems, as the mantle flow will only rise to the height of the thermal equilibrium. Systems working as solar pre-heaters usually have the inlet at the top of the heat exchanger annulus.

The mentioned danger of reverse thermosyphoning in thermosyphon solar pre-heater systems can be avoided using an adequate collector – heat exchanger inlet design, as described in Chapter 2.2.1.

Figure 2.29: Connection Scheme of Double Mantle Heat Exchanger Storages (Morrison et al., 1999)

Several experimental and simulation based investigations on thermally stratified hot water storage tanks can be found in literature. Lavan and Thompson (1977) determined the effect of geometric and dynamic parameters on the thermoclines while tapping hot water experimentally. For the experiments two PMMA storage cylinders of different volume
were used. The results can be summarised in design recommendations for vertical hot water storages. The cold water entry has to be located close to the bottom with a large diameter to slow down the fluid velocity. The storage length to diameter ratio indicates to use long storage tanks with a small diameter. The draw-off efficiency of the storage tank is better the higher the temperature difference between cold and hot water is. These recommendations were summarised in a mathematical correlation to predict the draw-off efficiency of a storage tank. However, the influence of the storage tank materials’ heat conductivity was neglected. For two commercial available tanks the authors recommended flow distributors at the top and bottom of the storage as shown in Figure 2.30 to achieve a low fluid velocity at a given inlet diameter.

![Water Distributor at the Top of the Storage Tanks](image)

Figure 2.30: Flow Distributors for Pressurised Vertical Storage Tanks Proposed by Zalman and Thompson (1977)

Shah and Furbo (2003) investigated entrance effects in solar storage tanks numerically by 3D CFD and experimentally with a transparent test water tank. The inlet designs studied were a straight pipe inlet, a small hemispherical baffle plate above the inlet pipe and a large flat baffle plate above the inlet pipe. In the CFD model two different draw-off rates 60 l h⁻¹ and 600 l h⁻¹ were compared. At low flow rates the influence of the flow distributor has minor effects on the mixing inside the storage tank, while at high flow rates, the large baffle plate performed best.
The analysis of the experimental results on the inlet design impact showed the necessity for further development of the applied calculation method based on the first and second law of thermodynamics.

Alizadeh (1999) investigated the stratification in horizontal cylindrical storage tanks experimentally and compared the results with two one-dimensional numerical storage tank models. The experiments had a focus on different storage tank states — stratified or fully mixed temperature profile — and two different cold water inlet designs — straight tube inlet and a divergent conical nozzle bent 30 ° to the bottom. The initial stratification was established with a heating rod at the mid-height of a storage tank end. To achieve a mixed temperature profile a pump mixed the water during the heating up period. The conical inlet outperformed the straight tube inlet in terms of maintaining the stratification during drawing off water (Figure 2.32).
Especially at the bottom of the storage tank the numerical models developed showed discrepancies to the measurement results as the mixing induced by the inlet jet is not considered.

Cònsul et al. (2004) carried out a CFD simulation concerning the influence of different draw-off flow rates on the thermal stratification of a horizontal storage tank. The storage tank had a straight tube at the inlet. Beginning at a draw-off rate of 180 l h⁻¹, the stratification is destroyed while water is being tapped (Figure 2.33). The flow rate for the storage tank tests according to ISO 9459-2 (1995) is with 600 ± 50 l h⁻¹ three times higher.

Wenfeng et al. (2011) numerically studied the influence of the inlet velocity — 0.25 m s⁻¹ (159 l h⁻¹) 0.5 m s⁻¹ (318 l h⁻¹) and 1.0 m s⁻¹ (636 l h⁻¹) — in a storage tank setup as shown in Figure 2.33 with an in- and outlet diameter of 15 mm. The heat removal efficiency was calculated using the energy contained in the fully mixed storage at 60 °C divided by the energy accumulated during the draw-off till the outlet temperature drop be-
low 32 °C. The efficiency was found to decrease with increasing flow rates from 88.4 % to 77.8 %. However, at a low flow rate the results indicated a difficulty to remove the hot water above the outlet level.

To improve the heat removal efficiency of the prototype system the outlet has to be located as close as possible to the top of the storage tank annulus.

Hegazy and Diab (2002) experimentally investigated an improved design for a 50 l electrical hot water heater by changing the heating element configuration and the inlet design. The change from a vertical straight tube inlet to a horizontal wedged inlet pipe was able to promote thermal stratification and thus a better draw-off efficiency. Based on these findings a further study was carried out by Hegazy (2007) on the inlet design. Three different inlet geometries as shown in Figure 2.34 were tested at a draw-off rate of 300 l h⁻¹ and 600 l h⁻¹. The slotted inlet outperformed the other designs in terms of draw-off efficiency and is the simplest solution in terms of manufacturing costs.

Figure 2.34: Inlet Geometries Tested by Hegazy (2007)

Andrés and López (2002) developed a model of a solar domestic water heater with a mantle heat exchanger for the simulation package TRNSYS (Klein et al., 1997). The fluid inlet of the double mantle is placed at the top of the annular. The heat flux to the surroundings within the TRNSYS model, i.e. the convective heat transmission on the surfaces and the heat conduction through the different layers, like e.g. steel or insulation materials, is modelled as a combined overall heat transfer coefficient. This coefficient has to be estimated and validated by measurement data (cf. Morrison and Braun, 1985). The advantage, thereby, is the reduced amount of variables, e.g. if there are unknown condi-
tions, there is just one parameter to estimate. The heat flux within the storage is obtained by direct coupling between tap water and heat transfer fluid temperature (Figure 2.23). After building up the one-dimensional model, the model was validated using measurement data.

![Diagram of Heat and Mass Transfer in Tank and Heat Exchanger Annulus](image)

Figure 2.35: Heat and Mass Transfer in Tank and Heat Exchanger Annulus (Andrés and López, 2002)

In contrast to the approach of a fixed overall heat transfer coefficient, Eames and Norton (1998) summarised the effect of the wall conductivity and heat losses on the degradation of the storage tank’s thermocline in times with no flow as being either over- or underestimated by the two investigated one-dimensional models. In horizontal storage tanks especially in the lower and upper part of the annulus large differences occur. A better formulation of the effective thermal conductivity is achieved by incorporating the cross section area of fluid and wall (equation (2.42)), as published in Morrison et al. (1999) and shown in Figure 2.36.

\[
\kappa_{\text{eff}} = \frac{\kappa_{\text{wall}} A_{\text{wall}} + \kappa_{\text{fluid}} A_{\text{fluid}}}{A_{\text{fluid}}} \quad (2.42)
\]
From equation (2.42) two design targets can be derived. A reduction of the wall thickness to the required minimum comes along with a reduced effective thermal conductivity and cost savings. The influence of the heat conduction on the stratification was also shown by Shyu et al. (1989) for vertical storage tanks, where a bigger wall thickness was related to a pronounced degradation of the stratification. The use of materials with low heat conductivity such as polymers has to be investigated, whether the heat transfer under normal operation conditions is sufficient and the material can resist the occurring pressure as well as thermal loads.

Hobson and Norton (1988) developed and published a simulation model of direct thermosyphon solar water heaters. The relaxation of the thermocline inside the vertical storage tank was shown to be dominated by the storage walls. The description of the relaxa-
tion was expressed similar to equation (2.42), however, the denominator additionally contained the wall cross section A_{wall}. This calculation scheme was verified experimentally. For a copper storage tank the discrepancy of the diurnal thermal output between measurement and calculation could by decreased from 6 % down to 2.8 % using the effective thermal conductivity correlation. The friction losses in the system were described the most accurate way by applying the non-isothermal flow through pipe sections approach developed by Addlesee (1980). It is valid for $50 \leq \text{Re} \leq 2,500$ and represented by equation (2.43).

$$f = 600 \text{Re}^{-1.19}$$ \hspace{1cm} (2.43)

with

Re \hspace{1cm} Reynolds Number \hspace{1cm} [-]

f \hspace{1cm} Friction Factor \hspace{1cm} [-]

Using this approach, the predicted and measured flow rates in the system under steady state conditions differed only by 2 %. The collector model used was a two-dimensional finite difference model, with an accurate transient behaviour. Based on this simulation approach the authors developed a design nomogram for direct thermosyphon solar systems (Hobson and Norton, 1989). The uncertainty in predicting the annual solar fraction was found to be in the range of 8–13 % under climatic conditions of the UK.

An adaption of the simulation model on indirect thermosyphon solar hot water heaters was published by Norton, Edmonds and Kovolos (1992). Thereby the direct flow storage tank model was replaced by a vertical double mantle storage tank model. The friction losses inside the double mantle were neglected by the authors as the incorporation of a friction factor for laminar flow between cylindrical walls lead to an underestimation of the simulated compared to the measured flow rate. This simplification resulted in a simulated flow rate within 10 % accuracy compared to the measured flow rate and a temperature rise in the vertical storage tank differing below 2.5 % to measurement data.

Hafner et al. (1999) developed a simple hot water storage tank model without a heat exchanger for CARNOT. The storage tank provides the basis for the development of a double mantle heat exchanger storage model. It is divided along its height into n user setta-
ble nodes. For each node the energy balance is drawn using a finite element calculation method as shown in equations (2.44) and (2.45).

\[
\frac{dT}{dt} = \frac{(UA)_{\text{loss}}}{V_n}(T_{\text{amb}} - T_n) + \frac{\kappa_{\text{eff}}}{\rho c_{\text{fluid}}} (T_{n+1} + T_{n-1} - 2T_n) + \frac{\dot{m}_{\text{up}} c_{\text{fluid}}}{V_n} (T_{n-1} - T_n) + \frac{\dot{m}_{\text{down}} c_{\text{fluid}}}{V_n} (T_{n+1} - T_n)
\]

(2.44)

wherein

\[
\kappa_{\text{eff}} = \frac{4 A_{\text{loss}} n \kappa_{\text{wall}}}{\pi D_{\text{inner}}} + \kappa_{\text{fluid}}
\]

(2.45)

with

- \(A_{\text{loss}}\): Surface of a Node [m²]
- \(c_{\text{fluid}}\): Specific Heat Capacity of the Fluid [J kg⁻¹ K⁻¹]
- \(D_{\text{inner}}\): Inner Diameter of the Storage Tank [m]
- \(dT\): Temperature Gradient [K]
- \(dt\): Time Step [s]
- \(\dot{m}_{\text{down}}\): Collector Mass Flow Rate Downwards [kg s⁻¹]
- \(\dot{m}_{\text{up}}\): Collector Mass Flow Rate Upwards [kg s⁻¹]
- \(n\): Number of Nodes [-]
- \(T_{\text{amb}}\): Ambient Temperature [°C]
- \(T_{n-1}\): Temperature of the Previous Node [°C]
- \(T_n\): Temperature of the Considered Node [°C]
- \(T_{n+1}\): Temperature of the Following Node [°C]
- \(U_{\text{loss}}\): Heat Loss Coefficient [W m⁻² K⁻¹]
- \(V_n\): Volume of 1 Node [m³]
- \(\kappa_{\text{eff}}\): Effective Axial Thermal Conductivity [J kg⁻¹ K⁻¹]
- \(\kappa_{\text{fluid}}\): Thermal Conductivity of the Fluid [J kg⁻¹ K⁻¹]
- \(\kappa_{\text{wall}}\): Thermal Conductivity of the Wall [J kg⁻¹ K⁻¹]
The stratification within the storage tank is assumed to be ideal. The load (cold water) is propagated through every node \(n \) from the bottom to the top. The energy (temperature) from the heat source is inserted at the first node downwards fulfilling the requirement \(T_{\text{source}} > T_{\text{node}} \). Heat losses are calculated at the storage tank annulus taking insulation properties into account. To achieve realistic behaviour of the storage tank the occurring axial heat conductivity is calculated.

Kleinbach et al. (1993) investigated the multimode and the plug flow approach for modelling direct flow thermal storage tanks and enhanced both approaches by a plume entrainment approach during the cooling down phase to achieve higher accuracy. In an experiment the stratification inside a low flow solar thermal system was measured and shown.

The cooling down phase of the one-dimensional storage tank models cannot be described in a physically correct way. Oliveski et al. (2003) compared the results of two-dimensional calculation models for storage tanks with those of one-dimensional models and experimental data. The one-dimensional calculation schemes use computational artifices to calculate stratification effects during the cooling phase. Franke (1997) interchanges the water layers according to their temperature, while Klein et al. (1997) mix the upper colder layer with the lower hotter layer to a mean temperature. Both mixing methods provide a good approximation of experimental results (Figure 2.37). For that reason the authors recommend one-dimensional (simple) models for long term performance predictions. The calculation method according to Klein et al. (1997) is already in use in the CARNOT models and will also be implemented in the double mantle heat exchanger storage tank model.
Summary

Literature on thermosyphon system storage tanks shows the necessity of a technically well-designed cold water inlet with a large diameter and a flow diffuser at low manufacturing costs. The closer the hot water outlet is located to the top the easier the hot water can be discharged from the storage tank even at low flow rates.

The effective material conductivity directly influences the degradation of the stratification inside the storage tank.

For solar only systems the heat exchanger inlet shall be located at the top of the storage tank.

Different numerical storage tank models are published from three-dimensional down to one-dimensional tank description. One-dimensional models require the least computational effort but require the implementation of artifices to incorporate the loss of stratification during the cooling down phase. For long term predictions one-dimensional modelling of storage tanks is sufficient.

Finally, the analysis of a TRNSYS double mantle heat exchanger and CARNOT simple storage tank model gives hints regarding the development of a CARNOT double mantle heat exchanger storage model needed for the sensitivity analysis.

The literature review on storage tanks and storage tank simulation is an outline of publications; further readings are added to the bibliography section in Appendix F.

2.2.4 Interconnecting Pipes

Vaxman and Sokolov (1986) discussed the effect of the connecting pipes in thermosyphon systems. They conducted their research using the thermosyphon setup as illustrated in Figure 2.38. In order to suppress reverse thermosyphoning during night the upper
Comprehensive Market and Literature Review

Pipe leading from point B to C has to be properly insulated. The insulation of the lower pipe from D to A is not that important.

Reverse thermosyphoning can be completely stopped when the similar stratification along A–B–C and along A–D–C is reached. For systems with draw-off taking part also during night, the authors recommend a height difference between collector outlet and storage tank inlet of 300 mm < ΔH < 800 mm.

![Diagram of the Investigated Thermosyphon System](image)

Figure 2.38: Scheme of the Investigated Thermosyphon System (Vaxman and Sokolov, 1986)

Morrison (2001) carried out a variation of the pipe diameter of the interconnecting pipes between collector and storage tank of a closed-coupled thermosyphon system with electrical backup heating. His investigations show an optimum for a daily collector volume flow equal to the daily load volume. The ratio of 1 can be achieved by narrowing the pipe diameter. This optimisation has above all an economic advantage as costs for the piping can be reduced.

It has, however, to be proved whether these results can directly be transferred onto a thermosyphon system running without an electrical backup heater. An electrical backup heater keeps a certain amount of the storage tank at a desired temperature. In order to incorporate solar energy into the storage tank the temperature produced by the collector has to be above the backup heater temperature. To achieve high collector temperatures (at a low mass flow rate) an additional flow resistance using narrow pipes can be implemented. Michaelides and Wilson (1996) simulated the impact of different backup heating configurations on the annual solar fraction. Their results show a thermosyphon system with an external backup heater is able to achieve an annual solar fraction of 86% under
the conditions of Cyprus. The same system with an internal electrical backup heater in the upper storage tank part performs at $f_{\text{sol}} = 77\%$ while the same electrical backup heater at the storage tank bottom lowers the solar fraction to 59%.

By varying the pipe dimensions, a direct link on the thermosyphonic flow rate is created. A low flow rate is suitable for systems with an internal backup heater, which generally has negative impact on the solar fraction. By insulating the piping between collector outlet and storage tank inlet, reverse thermosyphoning can be prevented.

2.2.5 Heat Transfer Medium

Norton and Edmonds (1991) used a dynamic simulation model in order to analyse the effect of aqueous propylene-glycol concentrations on the system performance of an indirect thermosyphon system and compared it to a drain-down direct system under the conditions of London. For London, a minimum propylene-glycol concentration of 25% is needed to compensate the lowest temperatures in December as shown in Figure 2.39 to avoid damage to the system.

As maximum propylene-glycol concentration the authors recommend 40%. A higher concentration leads to a significant reduction of the annual energy output. The indirectly
freeze-protected system is found to outperform by 12% a drain-down system which does not work during times with frost. This work shows the importance of adopting the freeze-protection to climatic conditions in order to optimise the annual system output.

Antifreeze, in Schellers’ (1985) study mono-ethylene-glycol, in the collector circuit up to a concentration of 50% has only a little influence on the annual solar fraction of thermosyphon systems. Higher concentrations, however, reduce the solar fraction extremely, as the dynamic viscosity of the heat transfer fluid increases. Therefore, a water/antifreeze mixture with an antifreeze rate as small as possible should be chosen.
3 System Simulation

The overall target of the system simulation is to carry out a sensitivity analysis leading to optimised prototype design parameters. As the toolbox used MATLAB/SIMULINK (The Mathworks, 2011) and CARNOT (Hafner et al., 1999) lacks a double mantle heat exchanger storage tank, a model of such device is developed and validated.

3.1 Formulation of Mathematical Descriptions

This chapter deals with the mathematical basics and physical correlations, which are necessary to describe thermosyphon systems. Furthermore, the transfer of this background into simulation is discussed.

3.1.1 Fundamental Requirements

One of the fundamental requirements regarding the modus operandi of thermosyphon systems is the density-temperature correlation of the working fluid (equation (3.1); in most cases either water or a water glycol mixture is used):

\[\rho_{\text{fluid}} = \rho(T) \]

with

- \(\rho_{\text{fluid}} \) Fluid Density \([\text{kg m}^{-3}]\)
- \(\rho(T) \) Density at Temperature \(T \) \([\text{kg m}^{-3}]\)

Using water as heat transfer fluid, the temperature dependent density varies between 999.85 kg m\(^{-3}\) at 0 °C and 958.50 kg m\(^{-3}\) at 99.5 °C. This density change is only about 4 % over the whole temperature range. According to the German standard DIN V 4757 (1995), the density between 0–99.5 °C can be described using a fourth-power polynomial (equation (3.2)):
\[\rho(T) = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4 \]

(3.2)

with

\begin{align*}
 a_0 & \quad \text{Coefficient 0 (999.85 kg m}^{-3} \text{)} \\
 a_1 & \quad \text{Coefficient 1 (6.187\times10^{-2} kg m}^{-3} \text{ °C}^{-1} \text{)} \\
 a_2 & \quad \text{Coefficient 2 (-7.654\times10^{-3} kg m}^{-3} \text{ °C}^{-2} \text{)} \\
 a_3 & \quad \text{Coefficient 3 (3.974\times10^{-5} kg m}^{-3} \text{ °C}^{-3} \text{)} \\
 a_4 & \quad \text{Coefficient 4 (-1.110\times10^{-7} kg m}^{-3} \text{ °C}^{-4} \text{)}
\end{align*}

For water glycol mixtures as heat transfer medium, the density temperature correlations are additionally dependent on the mixing ratio. CARNOT uses fitted data out of Adunka (1991) to describe the correlations. Figure 3.1 shows the density temperature correlations for the heat transfer liquids used in the sensitivity analysis (cf. Chapter 3.5.2).

![Figure 3.1: Density Temperature Correlations of Water and Water/Glycol Mixtures used in Simulations](image)

3.1.2 Basic Working Principle of a Thermosyphon Solar Water Heater

In general, a thermosyphon system can be compared to a U-tube filled with water as illustrated in Figure 3.2.
Figure 3.2: Functional Principle of Thermosyphon Systems

At starting time \(t = 0 \), both the U-tube and the thermosyphon system are filled with fluid (water) of a uniform temperature. Due to the principle of communicating vessels, both branches are filled to the same height \(z \) (Figure 3.2, case 1). The same conditions are valid for the thermosyphon system. The solar collector and the piping leading to the storage tank correspond to the left side, while storage tank and the returning pipe are part of the right branch.

The water inside the left branch of the U-tube is heated by an external heat source and the thermosyphon system by the sun (Figure 3.2, case 2). The density in the left branch is decreasing according to equation (3.2). The filling height in the left branch increases as described in equation (3.3):

\[
dz = \frac{m \Delta \rho}{\rho_0 \rho_1 \cdot A_{pipe}}
\]

(3.3)

with

- \(A_{pipe} \) -- Pipe Cross Section Area [m²]
- \(\Delta \) -- Height Increase [m]
- \(m \) -- Fluid Mass [kg]
- \(\rho_0, \rho_1 \) -- Fluid Density [kg m⁻³]
- \(\Delta \rho \) -- Density Change [kg m⁻³]
The external heat supply is continued until the water in the left branch starts to spill. Hence, the left branch becomes lighter than the right branch. According to the principle of communicating vessels, water flows from right to left until mass balance is reached again. Looking at the thermosyphon system, water flows into the storage tank, where it increases the imbalance additionally (Figure 3.2, case 3) and forces the flow rate.

Theoretically, the increasing imbalance leads to a very high mass flow rate. Due to pressure losses caused by bends, branches and roughness and viscosity inside the hydraulic circuit a balanced system develops, where pressure losses are equal to the pressure gain by buoyancy (equation (3.4)):

\[
\Delta p_{\text{buo}} = \Delta p_{\text{loss}}
\]

(3.4)

with

- \(\Delta p_{\text{buo}}\): Pressure Gain by Buoyancy [Pa]
- \(\Delta p_{\text{loss}}\): Pressure Losses by Fluid Velocity [Pa]

3.1.3 Flat-Plate Collectors

If the temperature rise between collector inlet and outlet is assumed to be linear, the temperature change can be written as a function of the collector height as illustrated in Figure 3.3 and described by equations (3.5) and (3.6):

\[
z_{\text{col}} = l_{\text{col}} \sin \gamma
\]

(3.5)
A more correct formulation of the temperature rise within the collector is made by using an equation derived from Duffie and Beckmann (2006). A constant overall heat loss coefficient U_L and a constant collector efficiency factor F' (equation (3.7) and (3.8) are taken into account.

$$T(z) = (T_{in} - T_{amb} - \frac{G_{col}}{U_L})\exp\left(-\frac{A_{col}(z)U_L F'}{m c}\right) + T_{amb} + \frac{G_{col}}{U_L} \tag{3.7}$$

$$A_{col}(z) = \frac{wz}{\sin \gamma} \tag{3.8}$$
3 System Simulation

with

- \(A_{col}(z) \) Collector Area at Height \(z \) [m²]
- \(c \) Heat Capacity of Collector Fluid [J kg⁻¹ K⁻¹]
- \(F' \) Collector Efficiency Factor [-]
- \(G_{col} \) Irradiation in Collector Plane [W m⁻²]
- \(\dot{m} \) Mass Flow Rate [kg s⁻¹]
- \(T(z) \) Temperature at Height \(h \) [°C]
- \(T_{in} \) Inlet Temperature [°C]
- \(T_{amb} \) Ambient Temperature [°C]
- \(U_L \) Overall Heat Loss Coefficient [W m⁻² K⁻¹]
- \(w \) Collector Width [m]
- \(z \) Collector Height [m]
- \(\gamma \) Collector Tilt Angle [°]

Both calculation methods have advantages and disadvantages. For the linear approach, measurement data for inlet and outlet temperature have to be available to calculate the fluid temperature inside the collector. In consequence, this method is not practicable for simulation models, as the goal behind the simulation is to calculate the outlet temperature.

The method propagated by Duffie and Beckmann can be implemented into simulation models. It contains constants, the overall heat loss coefficient and the collector efficiency factor, and calculates the outlet temperature using the available variables irradiation, mass flow and collector inlet temperature. The calculation method by Duffie and Beckmann is compared to data of a collector efficiency test. The collector efficiency factor \(F' = 0.9 \) is calculated according to equation (2.23) and the overall heat loss coefficient \(U_L = 4.58 \text{ W m}^{-2}\text{ K}^{-1} \) is taken from the collector efficiency curve. Data from different temperature steps are taken into consideration in order to identify the temperature dependency of the calculation method (Figure 3.4).
The maximum deviation between calculation and measurement is 1.4 K or 10 % at a collector inlet temperature of 83 °C.

Using equations (3.1) to (3.4), the density change, leading to the thermosyphonic flow inside the solar collector, can be described by equation (3.9)

$$\Delta \rho(z) = \int_0^z \rho_{in} (T_{in}) - \rho(T(z)) dz$$ \hspace{1cm} (3.9)

with

- T_{in}: Collector Inlet Temperature [°C]
- $T(z)$: Temperature at Height h [°C]
- z: Collector Height [m]
- $\Delta \rho(z)$: Density Change within the Solar Collector [kg m$^{-3}$]

3.2 Possibilities and Challenges using MATLAB / SIMULINK with the Extension CARNOT

The CARNOT (Conventional And Renewable eNergy systems Optimization Toolbox) blockset is an extension for MATLAB / SIMULINK. CARNOT is a tool for the calculation and simulation of heating systems. It provides models for heat sources such as solar col-
lectors, storage tank systems, hydraulics and offers a library for fundamental material calculation. Due to the open source philosophy, CARNOT can be enhanced by every user. The components used for the simulation of thermosyphon systems, except the double mantle heat exchanger storage tank, were validated by Hafner et al. (1999).

In comparison to standard solar-thermal simulation software, CARNOT offers the possibility to analyse the behaviour of a model in detail. Furthermore, the development and testing of new models and control strategies is possible.

3.2.1 Thermo Hydraulic Vector

CARNOT uses data vectors to transport information within the models. The most important vector is the so-called thermo hydraulic vector (THV). The THV bundles all relevant fluid data and fluid states. This includes the fluid identity, e.g. water or water-glycol mixture, fluid pressure, pressure drop coefficients, fluid temperature, velocity and density (Table 3.1). During simulation the THV is passed from block to block. Inside each block the THV is disassembled and the changes to the fluid state are calculated, e.g. the pressure losses and temperature drop in a pipe. Afterwards the THV is reassembled and fed into the subsequent block as entry.
Table 3.1: Structure of the Thermo Hydraulic Vector (Hafner et al., 1999)

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Physical Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flow Identifier (ID)</td>
<td>[-]</td>
<td>ID < 0 no mass flow in the branch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ID <= 10,000 no pressure drop calculation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ID <= 20,000 only pressure drop calculation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ID >= 20,000 calculation of pressure drop and static pressure</td>
</tr>
<tr>
<td>2</td>
<td>Fluid Temperature</td>
<td>[°C]</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Mass Flow</td>
<td>[kg s⁻¹]</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Fluid Pressure</td>
<td>[Pa]</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Fluid Type</td>
<td>[-]</td>
<td>1 water</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 air</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 cotton oil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 silicone oil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 water-propylene glycol</td>
</tr>
<tr>
<td>6</td>
<td>Fluid Mixture</td>
<td>[-]</td>
<td>Percentage of propylene glycol in water-propylene glycol antifreeze mixtures</td>
</tr>
<tr>
<td>7</td>
<td>Pipe Diameter</td>
<td>[m]</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Constant Pressure Drop Coefficient</td>
<td>[Pa]</td>
<td>Cf. Chapter 3.2.2.2</td>
</tr>
<tr>
<td>9</td>
<td>Linear Pressure Drop Coefficient</td>
<td>[s kg⁻¹]</td>
<td>Cf. Chapter 3.2.2.2</td>
</tr>
<tr>
<td>10</td>
<td>Quadratic Pressure Drop Coefficient</td>
<td>[s² kg⁻²]</td>
<td>Cf. Chapter 3.2.2.2</td>
</tr>
<tr>
<td>11...20</td>
<td>Not Used</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.2.2 Mathematical Description of the Simulation Blocks Used

Most of the blocks needed for the thermosyphon system simulation are available in the standard CARNOT library. The double mantle storage tank needed for a realistic system setup is not available so far.

3.2.2.1 Solar Collector

CARNOT’s solar-thermal collector model is based on TRNSYS type 101 (Isakson, 1991; Hafner et al., 1999), a matched flow collector model. It is a so-called characteristic curve model. Basis of the calculation is the second order collector efficiency curve derived from normative tests according to DIN EN 12975-2 (2006). The calculation is carried out using a one-dimensional multi node approach. The collector is divided between inlet and outlet.
into n user settable nodes. Along its width, no division into nodes takes place. Consequently, the flow distribution is considered to be uniform throughout the collector. Each node n is taken into consideration in order to calculate the energy balance as shown in equation (3.10). This equation is represented by the block ‘unicol_R13’ in Figure 3.5.

$$c_{\text{col}} \frac{dT}{dt} =$$

$$= \dot{q}_{\text{sol}} + \frac{mc_{\text{fluid}}}{A_{\text{col}}}(T_{n-1} - T_n) + a_1(T_{\text{amb}} - T_n) - a_2(T_{\text{amb}} - T_n)^2 + u_{\text{wind}}v_{\text{wind}}(T_{\text{amb}} - T_n) + u_{\text{sky}}(T_{\text{sky}} - T_n)$$

(3.10)

with

- A_{col}: Aperture Area [m²]
- c_{col}: Thermal Capacity of the Solar Collector per m² [J m⁻² K⁻¹]
- c_{fluid}: Specific Heat Capacity of the Heat Carrier [J kg⁻¹ K⁻¹]
- \dot{q}_{sol}: Absorbed Radiation per Collector Area [W m⁻²]
- dT: Temperature Gradient [K]
- dt: Time Step [s]
- \dot{m}: Collector Mass Flow Rate [kg s⁻¹]
- T_{amb}: Ambient Temperature [°C]
- T_{n-1}: Temperature of the Previous Node [°C]
- T_n: Temperature of the Considered Node [°C]
- u_{wind}: Wind Heat Loss Coefficient [W m⁻³ K⁻¹]
- v_{wind}: Wind Velocity [m s⁻¹]
- u_{sky}: Clear Sky Heat Losses [W m⁻² K⁻¹]
- T_{sky}: Sky Temperature [°C]
- a_1: Linear Collector Heat Loss Coefficient [W m⁻² K⁻¹]
- a_2: Quadratic Collector Heat Loss Coefficient [W m⁻² K⁻²]

Equation (3.10) takes wind and sky temperature dependent losses into account, which are already included in the collector efficiency curve. These losses are set to 0 in the simulation runs. The irradiation into the collector plane is composed of direct and diffuse
irradiation portions, the position of the collector against the sun and the optical characteristics of the transparent cover. These correlations are included in the collector model as subsystems (Figure 3.5).

Figure 3.5: CARNOT Collector Subsystem

The subsystem ‘inclined surface’ calculates the irradiation onto the transparent cover. The horizontal direct and diffuse irradiation, sun zenith and azimuth angle, the collector tilt and azimuth angle as well as the isotropic or the Hay-Davis sky model are part of this calculation.

Figure 3.6 exemplarily shows the calculation of the zenith and azimuth angle on a horizontal surface. The calculation for an inclined collector is carried out analogously.

The subsequent block ‘collector optics’ determines the optical characteristics of the transparent collector cover. It includes the glazing properties as well as the incidence angle modifier (IAM) of the direct irradiation. By multiplying the calculated values with the optical efficiency the actual absorbed energy per collector area is computed, which is used in equation (3.10).
Originally, the IAM is interpolated using a value table. In order to improve the usability of the model, the model is enhanced by a calculation method developed by Ambrosetti and Keller (1985). This calculation method is also applied to the collector testing standard DIN EN 12975-2 (DIN, 2006). For the calculation of the IAM of flat-plate collectors only one measurement point is necessary. This value at an irradiance angle of $\theta = 50^\circ$ compared to the perpendicular irradiation onto the collector surface (Figure 3.7) can be taken from every collector test report.

Equations (3.11) and (3.12) have to be solved for n, a collector specific coefficient to describe the IAM for all beam angles.
\[ki(\theta) = 1 - \tan^n \left(\frac{\theta}{2} \right) \] (3.11)

in which \(ki(\theta) = \frac{\eta_\theta}{\eta_\perp} \) (3.12)

with\[ki(\theta) \quad \text{Incidence Angle Modifier (IAM)} \quad [-] \]
\[\theta \quad \text{Beam Angle} \quad [^\circ] \]
\[n \quad \text{Collector Specific Coefficient} \quad [-] \]
\[\eta_\theta \quad \text{Collector Efficiency at Beam Angle } \theta \quad [-] \]
\[\eta_\perp \quad \text{Collector Efficiency at Perpendicular Irradiation} \quad [-] \]

Due to their optical asymmetrical behaviour, evacuated tube collectors and parabolic troughs cannot be described by this formula.

The pressure gain inside the solar collector is calculated according to the density change in every collector node, while friction losses due to fluid velocity are calculated in a subsystem. The calculation of the pressure drop uses an approach given in DIN EN 12975-2 (DIN, 2006). All pressure drop values are measured at 20 °C fluid temperature and evaluated using a quadratic regression (equation (3.13)):

\[\Delta p = p_{\text{loss,qua}} \dot{m}^2 + p_{\text{loss,lin}} \dot{m} \] (3.13)

with\[\dot{m} \quad \text{Mass Flow Rate} \quad [\text{kg s}^{-1}] \]
\[p_{\text{loss,lin}} \quad \text{Linear Velocity Depended Pressure Drop} \quad [\text{Pa s kg}^{-1}] \]
\[p_{\text{loss,qua}} \quad \text{Quadratic Velocity Depended Pressure Drop} \quad [\text{Pa s}^2 \text{ kg}^{-2}] \]
\[\Delta p \quad \text{Pressure Drop} \quad [\text{Pa}] \]

An adaptation of the friction losses due to the fluid temperature or the fluid viscosity is not calculated, as sheet pipe or volumetric solar collectors are very complex from the hydraulic point of view (cf. Chapter 2.2.2).
3 System Simulation

3.2.2.2 Thermosyphonic Pump

The circulation of the system is maintained by small pressure differences in the range of 1-30 mm water column (Morrison and Ranatunga, 1980). Beside the pressure gain on the collector side, friction losses result in the equilibrium of gain and losses. The resulting mass flow is described in equation (3.14) as a function of temperature and fluid velocity:

\[\dot{m} = f(T_{\text{fluid}}, v_{\text{fluid}}) \]

with

\[\dot{m} \] Mass Flow Rate \[\text{[kg s}^{-1}] \]

\[T_{\text{fluid}} \] Fluid Temperature \[\text{[° C]} \]

\[v_{\text{fluid}} \] Fluid Velocity \[\text{[m s}^{-1}] \]

The calculation of the pressure differences is one of the most important functions in thermosyphon systems. In CARNOT, a so called thermosyphonic pump is used to calculate the mass flow (Figure 3.8). The thermosyphonic pump is a standard component in CARNOT and is described in brief.

![Model of the Thermosyphonic Pump in CARNOT](image)

The mass-flow is calculated in the subsystem “set mdot”. It is solved using the standard quadratic equation (3.15). After calculating the mass flow in the thermosyphonic pump, the pressure coefficients are set to zero “[… 0 0 0]” and every subsequent block adds its pressure changes again. For negative fluid IDs (indicating no mass flow in the system), the mass flow is set to 0 kg s\(^{-1}\) using the switch function “switch pump off”. To avoid algebraic loops the direct feed through of the fluid temperature and mass flow is suppressed.
by using the linear time-invariant (LTI) transfer functions ‘temperature’ and ‘mass flow’ as shown in Figure 3.8.

\[0 = p_{\text{loss,qua}} \cdot \dot{m}^2 + p_{\text{loss,lin}} \cdot \dot{m} + p_{\text{loss,con}} \] \hspace{1cm} (3.15)

with

- \(\dot{m} \) Mass Flow Rate [kg s\(^{-1}\)]
- \(p_{\text{loss,con}} \) Constant Pressure Drop / Gain and Static Pressure [Pa]
- \(p_{\text{loss,lin}} \) Linear Velocity Depended Pressure Drop [Pa s kg\(^{-1}\)]
- \(p_{\text{loss,qua}} \) Quadratic Velocity Depended Pressure Drop [Pa s\(^2\) kg\(^{-2}\)]

Equation (3.17) is represented in CARNOT by the scheme shown in Figure 3.9.

Figure 3.9: Quadratic Approach to Calculate a Mass Flow out of Pressure Terms

The constant coefficient contains the temperature and height dependent static pressure, while the linear and quadratic coefficients include all pressure changes by friction.

All pressure coefficients are fed through every block of the thermosyphon system model and the pressure changes are added. This calculation method requires every block used for the thermosyphon system to have a pressure calculation subsystem.

The accuracy of the thermosyphonic pump in the simulation model is validated using measurement data from system tests (cf. Chapter 3.4).

In order to achieve realistic flow rates through the thermosyphon system, special attention has to be drawn to the system’s height settings. Even slight height and therefore
static pressure differences between the hot and cold leg of the thermosyphon system lead to a faulty system behaviour with e.g. mass-flow during nights.

An m-script\(^3\) originally implemented in CARNOT to check the height differences caused various problems and produced incorrect simulation results. Therefore, the parameterisation was revised in this work using the geometrical correlations within the thermosyphon system as shown in Figure 3.10 and equations (3.16) to (3.20). The related m-script has become part of the updated CARNOT toolbox and can be used by the whole CARNOT user-group.

\[
\overline{AB} + \overline{BC} + \overline{CD} + \overline{DA} = 0
\]
(3.16)

Wherein

\[
\overline{AB} = l_{col} \sin \gamma
\]
(3.17)

\[
\overline{BC} = z_{add} - d_{corr}
\]
(3.18)

\[
\overline{CB} = -d_{tank}
\]
(3.19)

\[
\overline{DA} = -z_{add} - l_{col} \sin \gamma
\]
(3.20)

\(^3\) A m-script is an executable sequence stored in a plain text file
with
\[AB; BC; CD; DA \] Length of Each Leg [m]
\[d_{\text{store}} \] Storage Tank Diameter [m]
\[l_{\text{col}} \] Collector Length [m]
\[z_{\text{add}} \] Height Difference between Collector and Storage [m]
\[\gamma \] Collector Tilt Angle [°]

3.2.2.3 Piping

The thermal part of the piping is calculated using a finite volume calculation method according to Patankar (1980). The differential equation for an insulated pipe is described by equation (3.21):

\[
\frac{c_{w\text{all}} \cdot I_{\text{pipe}}}{V_{\text{node}}} \frac{dT}{dt} = \frac{u_{\text{pipe}} \cdot A_{\text{loss}}}{V_{\text{node}}} (T_{\text{amb}} - T_{n}) + \frac{k_{\text{axial}}}{dh^2} (T_{n+1} - T_{n}) + \frac{k_{\text{axial}}}{dh^2} (T_{n-1} - T_{n}) + \\
+ \frac{mc_{\text{fluid}}}{V_{\text{node}}} (T_{n-1} - T_{n})
\]

(3.21)

with
\[A_{\text{loss}} \] Inner Surface of the Pipe [m²]
\[c_{\text{fluid}} \] Specific Heat Capacity of the Fluid [J kg⁻¹ K⁻¹]
\[c_{\text{wall}} \] Specific Heat Capacity of the Piping Material [J m⁻¹ K⁻¹]
\[k_{\text{axial}} \] Effective Axial Heat Conductivity [W m⁻¹ K⁻¹]
\[dh \] Length of a Node [m]
\[I_{\text{pipe}} \] Pipe Length [m]
\[m \] Mass Flow Rate [kg s⁻¹]
\[T_{\text{amb}} \] Ambient Temperature [°C]
\[u_{\text{pipe}} \] Pipe Heat Losses [W m² K⁻¹]
\[V_{\text{node}} \] Nodal Volume [m³]
\[dT \] Temperature Gradient [K]
The heat loss U_{pipe} is calculated using the approach of a pipe with several concentric layers of different heat conductivity (Figure 3.11 and equation (3.22)).

$$U_{pipe} = \frac{\pi * d_i * \ln\left(\frac{d_i}{d_1}\right)}{\alpha_{amb} * d_3 + \frac{1}{2 \kappa_{pipe}} * \ln\left(\frac{d_1}{d_2}\right) + \frac{1}{2 \kappa_{iso}} * \ln\left(\frac{d_2}{d_3}\right) + \frac{1}{\alpha_{fluid} * d_1}}$$ \hspace{1cm} (3.22)

with

- d_1, d_2, d_3: Pipe and Insulation Diameters \[m\]
- $\alpha_{amb}, \alpha_{fluid}$: Convective Heat Transfer Coefficient from the Ambient and the Fluid \[W m^{-2} K^{-1}\]
- $\kappa_{pipe}, \kappa_{iso}$: Heat Conductivity of Pipe and Insulation Material \[W m^{-1} K^{-1}\]
- U_{pipe}: Pipe Heat Losses \[W m^{-2} K^{-1}\]
To achieve a realistic behaviour of the piping exposed to wind and weather, an additional (constant) convective heat loss is assumed. This heat loss with $\alpha_{\text{amb}} = 26 \text{ W m}^{-2} \text{ K}^{-1}$ is the mean value of a wind velocity in the range of $1 \text{ m s}^{-1} < v_{\text{wind}} < 3 \text{ m s}^{-1}$ for an outer pipe diameter of 50 mm (Elgeti, 2006). The convective heat transfer from the collector fluid to the pipe wall is assumed to be $\alpha = 600 \text{ W m}^{-2} \text{ K}^{-1}$. This value corresponds to natural convection of water which is found to be in the range of 100–600 $\text{ W m}^{-2} \text{ K}^{-1}$ (Kneer, 2007).

Besides, radial heat losses axial heat transfer is taken into consideration. For metallic materials the heat carrier fluid used has no influence on the resulting axial heat conductivity. In contrast the axial heat conductivity of materials with low heat conductivity such as polymers is dominated by the heat transfer fluid. The friction losses inside the piping are calculated according to the fluid velocity to be either laminar or turbulent, depending on the Reynolds Number (cf. equation (2.35)).

For a laminar flow regime ($\text{Re} < 2,320$), the calculation of the pressure drop has to be carried out according to equation (3.23):

$$
\Delta p = \frac{64 l_{\text{pipe}}}{\text{Re} d_{\text{inner}}^2} \frac{\rho}{2} v_{\text{fluid}}^2
$$

with

- d_{inner} Inner Tube Diameter [m]
- l_{pipe} Pipe Length [m]
- Δp Pressure Drop [Pa]
- v_{fluid} Velocity of the Fluid [m s$^{-1}$]
- ρ Fluid Density [kg m$^{-3}$]

For turbulent flow ($\text{Re} > 2,320$) the correlation changes to equation (3.24):

$$
\Delta p = f \frac{l_{\text{pipe}}}{d_{\text{inner}}^2} \frac{\rho}{2} v_{\text{fluid}}^2
$$

with

- f Friction Factor

For turbulent flow ($\text{Re} > 2,320$) the correlation changes to equation (3.24):
3 System Simulation

with

- d_{inner}: Inner Tube Diameter [m]
- f: Friction Factor (Velocity depended) [-]
- l_{pipe}: Pipe Length [m]
- Δp: Pressure Drop [Pa]
- v_{fluid}: Velocity of the Fluid [m s$^{-1}$]
- ρ: Fluid Density [kg m$^{-3}$]

The friction factor f in this case is a function of Reynolds number and surface roughness e of the pipe (equation (3.25)):

$$f = x(Re, e)$$ \hspace{1cm} (3.25)

with

- e: Surface Roughness [m]
- f: Friction Factor (Velocity depended) [-]
- Re: Reynolds Number [-]
- $x(Re, e)$: Function of Reynolds Number and Roughness [-]

According to Bohl and Elmendorf (2005), hydraulically smooth pipes are defined as shown in equation (3.26):

$$Re \frac{e}{d_{inner}} < 65$$ \hspace{1cm} (3.26)

The calculation of f is subdivided into three sections according to the Reynolds number (equations (3.27) to (3.29)):

- Blasius formula for the range $2,320 < Re < 10^5$
 $$f = 0.3164 Re^{-0.25}$$ \hspace{1cm} (3.27)

- Nikuradse formula for the range $10^5 < Re < 5 \times 10^6$
 $$f = 0.0032 + 0.221 Re^{-0.237}$$ \hspace{1cm} (3.28)
3 System Simulation

- Prandtl and Kármán formula for the range $\text{Re} > 10^6$

$$\frac{1}{\sqrt{f}} = 2 \log(\text{Re} \sqrt{f}) - 0.8 \quad (3.29)$$

with

<table>
<thead>
<tr>
<th>d_{inner}</th>
<th>Inner Tube Diameter [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>Surface Roughness [m]</td>
</tr>
<tr>
<td>f</td>
<td>Friction Factor [-]</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds Number [-]</td>
</tr>
</tbody>
</table>

Pressure losses caused by bends and other obstacles in the piping are added as additional hydraulic pipe length. For laminar flow, correction models for developing flow published in Bohl and Elmendorf (2005) are used.

3.3 Development and Validation of a Double Mantle Heat Exchanger Storage Model

CARNOT lacked a double mantle storage heat exchanger which, however, is indispensable for a realistic system simulation model of modern thermosyphon hot water heaters. Basis to this development besides others are the simple hot water storage tank model already available in CARNOT and a validated TRNSYS double mantle heat exchanger storage tank model (Andrés and López, 2002). Both models are described in Chapter 2.2.3 in brief. The overall requirements to the model development can be summarised:

- Every relevant geometrical parameter has to be tuneable,
- Conduction and convection mechanism have to be considered,
- Stratification effects have to be considered,
- The occurring pressure losses have to be calculated.

The storage tank model is developed using C as programming language. To use the code in MATLAB / SIMULINK it is compiled as a MATLAB executable MEX-file. MEX-files offer two main advantages. MEX-files provide the possibility of speeding up the simulation compared to MATLAB code and allow to call directly standard C-routines without having to rewrite them for MATLAB.
3 System Simulation

The C-Code of the storage tank can be found in Appendix B. The open source code contributes directly to knowledge as it can be enhanced by every user; the mathematical correlations can be transferred to various simulation environments.

3.3.1 Storage Tank Geometry

Against the background of usability in the product design process, all relevant geometrical storage tank parameters are identified and included into the model as editable parameters.

The storage tank model is one dimensional. It is divided into nodes n along its diameter d_{store} while every hot water layer covers the whole storage tank length l_{store} (Figure 3.12). The length of the mantle heat exchanger l_{mantle} can be less or equal to the storage tank length (Figure 3.12). Therefore, a variation in the heat exchanger surface can be simulated and evaluated. The collector fluid inlet is at the top of the heat exchanger annulus, while the outlet is located at the bottom of the heat exchanger. This top to bottom flow direction is a good connection scheme for solar pre-heat thermosyphon systems (cf. Chapter 2.2.3 and 3.5). The cold tap water is fed into the storage tank at the first, respectively bottom node and the hot water is drawn at the last, respectively top node. Due to the calculation scheme used, these heights for collector and hot water circuit are fixed. The head of the storage tank is flat. The possibility of modelling a bumped or dished boiler head is not implemented, as the nodal volume calculation of a three dimensional storage tank head does not bring along additional benefits for the one dimensional calculation scheme.
To calculate stratification effects, the storage tank is divided into a user-defined number of layers of either the same height or the same volume. The numeration of the elements is in ascending order from the bottom to the top of the storage tank (Figure 3.13). According to Chapter 2.2.3 (Khalifa and Mehdi, 1999), the heat transfer can be considered to be one dimensional vertical. Thus, symmetry along the vertical axis is taken into consideration.

The following chapter describes the calculation of the geometrical storage tank properties taking a constant node height into consideration. The calculation of the geometrical properties taking a constant volume into account can be seen from the related C-Code in Appendix A. The geometrical properties of the lower part of the storage tank are identical to the upper storage tank properties and have not to be calculated additionally.
The nodal height dz is calculated by equation (3.30):

$$dz = \frac{d_{\text{store.in}}}{n}$$ \hspace{1cm} (3.30)

with:
- dz: Nodal Height [m]
- $d_{\text{store.in}}$: Inner Storage Tank Diameter [m]
- n: Number of Discretised Layers [-]

After calculating the height of each node, the corresponding angle β_k has to be identified (equation (3.31)):

$$\beta_k = \arccos\left(\frac{d_{\text{store.in}} - b \cdot dz}{2} \right) \cdot \frac{180^\circ}{\pi}$$ \hspace{1cm} (3.31)

$$b = (n - k) + 1$$ \hspace{1cm} (3.32)
with

\[\beta_k \quad \text{Chord Angle of Node} \ k \hspace{1cm} [^\circ] \]
\[b \quad \text{Number of Elements in Contradictory Direction} \hspace{1cm} [-] \]
\[k \quad \text{Index of Current Node} \hspace{1cm} [-] \]

Using the chord angle \(\beta_k \), the volume of one layer can be calculated using equations (3.33) to (3.35) by subtracting the area of the triangle below the element and all elements above the considered node from the sector described by \(\beta_k \) (Figure 3.14).

![Figure 3.14: Schematic for the Calculation of \(A_{store,k} \)]

\[
V_{store,k} = A_{store,k} \cdot l_{store} \tag{3.33}
\]

\[
A_{store,k} = \frac{\beta_k}{180^\circ} \frac{d_{store,in}^2}{4} \left(\pi - 0.5 \cdot s_k \cdot (0.5 \cdot d_{store,in} - b \cdot dz) - \sum_{i=1}^{n} A_{store,i} \right) \tag{3.34}
\]

\[
s_k = \frac{d_{store,in}}{2} \left(\sin \left(\frac{\beta_k \cdot \pi}{180^\circ} \right) \right) \tag{3.35}
\]
3 System Simulation

with

\[V_{\text{store},k} \quad \text{Volume of Element } k \quad [\text{m}^3] \]
\[A_{\text{store},k} \quad \text{Area of Element } k \quad [\text{m}^2] \]
\[s_k \quad \text{Chord Length of Element } k \quad [\text{m}] \]

The next step is the calculation of the arc length \(o_k \) of each storage tank material according to equation (3.36):

\[o_k = \frac{\beta_k}{180^\circ} \frac{d_k\text{layer}}{2} \pi \quad (3.36) \]

with

\[o_k \quad \text{Arc Length} \quad [\text{m}] \]
\[d_k\text{layer} \quad \text{Diameter of the Considered Layer at Node } k \quad [\text{m}] \]

To calculate the real volume or the real arc length, every calculated value has to be doubled. As both even and odd numbers of nodes are allowed for the simulation, special attention to the elements around the horizontal symmetry axis has to be drawn in the program code.

For an even element number, the last node of the upper storage tank part is terminated by the symmetry axis, meaning element 1 is equal to element n, element 2 equals element n-1 and so on.

For an odd number of elements, a centrepiece exists, which is halved by the horizontal symmetry axis into an upper and a lower part. The behaviour of this centre node is calculated using \(dz/2 \). Afterwards, the area, volume and arc length is doubled. The calculation of the other elements is done according to the even case.

3.3.2 Heat Transfer Mechanisms and Stratification

The thermal behaviour of the storage tank is modelled by drawing the energetic balance for every node of collector fluid and hot water. The changes of inner energy per time step have to be equal to the entering and leaving heat flux. The basic equations can be written as shown in equations (3.37) and (3.38):
\[
\frac{dQ_{\text{inner}}}{dt} = c \cdot \rho_{\text{fluid,k}} \cdot V_{\text{node}} \cdot \frac{dT}{dt} = \dot{Q}_{\text{in}} - \dot{Q}_{\text{out}} \tag{3.37}
\]

\[
\frac{dT}{dt} = \frac{\dot{Q}_{\text{in}} - \dot{Q}_{\text{out}}}{c \cdot \rho_{\text{fluid,k}} \cdot V_{\text{node}}} \tag{3.38}
\]

with

- \(V_{\text{node}} \): Nodal Volume \quad [\text{m}^3]
- \(Q_{\text{inner}} \): Inner Energy \quad [\text{J}]
- \(\dot{Q}_{\text{in,out}} \): Heat Flux \quad [\text{W}]
- \(\rho_{\text{fluid,k}} \): Fluid Density at Node k \quad [\text{kg m}^{-3}]

Equations in form of equation (3.38) can be solved within MATLAB using e.g. the built-in algorithm ODE45. Figure 3.15 illustrates the considered heat transfer mechanisms for the calculation of the inner energy of the storage tank under normal operating conditions.

![Scheme of Considered Heat Transfer Mechanisms](image)

Figure 3.15: Scheme of Considered Heat Transfer Mechanisms

Within the tap water section, heat conduction from the upper, hot nodes towards the lower, cold nodes takes place. While drawing off water, cold water from mains enters the storage tank and is transported depending on the mass flow rate and the draw-off time to the upper nodes.
The collector fluid entering at the top of the storage tank flows towards the storage tank bottom and releases its heat via natural convection at the inner and outer wall of the double mantle. The heat at the inner mantle wall is transported by conduction to the tap water. From there, the heat is transferred to the water by convection. The fluid flow at the storage wall cannot be definitely described (Konrad, 2008). Thus, an imaginary conduction coefficient has to be added to the storage tank material. This coefficient has to be estimated by experimental results.

Heat at the outer mantle wall is transported by conduction through the mantle and insulation material to the ambient. At the ambient, forced convection due to wind takes place. Konrad (2008) calculated a wind dependent convection coefficient $h_{amb} = 13.8 \text{ W m}^{-2} \text{ K}^{-1}$ for a mean annual wind velocity in the range of $1 \text{ m s}^{-1} < v_{\text{wind}} < 3 \text{ m s}^{-1}$ based on data published by Elgeti (2006) for a diameter in the range of 0.5–1.0 m.

For areas without heat exchanger connection at the circumference and at the cover plates, heat losses through conduction in the insulation and convection at the ambient are taken into account (Figure 3.16).

All the heat transfer mechanisms described are combined using the Péclet correlations for flat sheets, which have been proved to be valid for the storage tank. For element k of the hot water section, the formulation of the heat transfer is represented by equation (3.39):
\[
\frac{dT_{\text{water},k}}{dt} = \frac{1}{\rho_{\text{water},k} \cdot c_{\text{water},k} \cdot V_{\text{water},k}} \cdot (k_{\text{water}} \cdot \frac{T_{\text{water},k+1} - T_{\text{water},k}}{dh} \cdot s_{k+1} \cdot l_{\text{store}} + \\
+ 2 \cdot \frac{T_{\text{collector},k} - T_{\text{water},k}}{R_{k_{\text{mantle,circum,in}}} + R_{k_{\text{mantle,circum,inv}}} + Q_{\text{e,water}}} + c_{\text{water},k} \cdot \dot{m}_{\text{water}} \cdot (T_{\text{water},k+1} - T_{\text{water},k}) - k_{\text{water}} \cdot \frac{T_{\text{water},k} - T_{\text{water},k-1}}{dh} \cdot s_k \cdot l_{\text{store}} - \\
- 2 \cdot \frac{T_{\text{water},k} - T_{\text{amb}}}{R_{k_{\text{mantle,circum,in}}} + R_{k_{\text{mantle,circum,inv}}} + R_{k_{\text{mantle,cover}}} + R_{k_{\text{mantle,cover}}}) - 2 \cdot \frac{T_{\text{water},k} - T_{\text{amb}}}{R_{k_{\text{mantle,circum,in}}} + R_{k_{\text{mantle,circum,inv}}} + R_{k_{\text{mantle,cover}}} + R_{k_{\text{mantle,cover}}}})
\]

(3.39)

The correlations for element \(k \) of the collector fluid are very similar as can be seen in equation (3.40):

\[
\frac{dT_{\text{collector},k}}{dt} = \frac{1}{\rho_{\text{collector},k} \cdot c_{\text{collector},k} \cdot V_{\text{collector},k}} \cdot (k_{\text{collector}} \cdot \frac{T_{\text{collector},k+1} - T_{\text{collector},k}}{b_{\text{mantle,middle},k}} \cdot d_{\text{mantle,middle}} \cdot l_{\text{mantle}} + \\
+ c_{\text{collector},k} \cdot \dot{m}_{\text{collector}} \cdot (T_{\text{collector},k+1} - T_{\text{collector},k}) - k_{\text{collector}} \cdot \frac{T_{\text{collector},k} - T_{\text{collector},k-1}}{b_{\text{mantle,middle},k}} \cdot d_{\text{mantle,middle}} \cdot l_{\text{mantle}} - \\
- T_{\text{collector},k} - T_{\text{water},k} \cdot R_{k_{\text{mantle,circum,in}}} + R_{k_{\text{mantle,circum,inv}}} + R_{k_{\text{mantle,cover}}} + R_{k_{\text{mantle,cover}}}) - 2 \cdot \frac{T_{\text{water},k} - T_{\text{amb}}}{R_{k_{\text{mantle,circum,in}}} + R_{k_{\text{mantle,circum,inv}}} + R_{k_{\text{mantle,cover}}} + R_{k_{\text{mantle,cover}}}})
\]

(3.40)

The heat resistances are represented by equations (3.41) to (3.50):

\[
R_{k_{\text{mantle,circum,in}}} = \frac{(d_{\text{store,out}} - d_{\text{store,in}})}{k_{\text{mantle}}(b_{k_{\text{store,out}}} + b_{k_{\text{store,in}}})} l_{\text{mantle}}
\]

(3.41)

\[
R_{k_{\text{mantle,circum,inv}}} = \frac{(d_{\text{mantle,out}} - d_{\text{mantle,in}})}{k_{\text{mantle}}(b_{k_{\text{mantle,out}}} + b_{k_{\text{mantle,in}}})} l_{\text{mantle}}
\]

(3.42)

\[
R_{k_{\text{insulation,store,circum}}} = \frac{(d_{\text{insulation,out}} - d_{\text{store,out}})}{k_{\text{insulation}}(b_{k_{\text{insulation,out}}} + b_{k_{\text{store,in}}})(l_{\text{store}} - l_{\text{mantle}})}
\]

(3.43)

\[
R_{k_{\text{mantle,cover}}} = \frac{1}{2} \frac{(d_{\text{mantle,out}} - d_{\text{mantle,in}})}{k_{\text{mantle}} A_{\text{mantle},k}}
\]

(3.44)

\[
R_{k_{\text{insulation,circum,inv}}} = \frac{(d_{\text{insulation,out}} - d_{\text{mantle,out}})}{k_{\text{insulation}}(b_{k_{\text{insulation,out}}} + b_{k_{\text{mantle,in}}})} l_{\text{mantle}}
\]

(3.45)
3 System Simulation

\[
R_{\text{radial,average}} = \frac{1}{2} \left(d_{\text{insulation, out}} - d_{\text{mantle, out}} \right) \frac{k_{\text{insulation, in}}}{A_{\text{insulation, k}}} \tag{3.46}
\]

\[
R_{h_{\text{amb, circum}}} = \frac{1}{h_{\text{amb}} b_{\text{insulation, out}} l_{\text{mantle}}} \tag{3.47}
\]

\[
R_{h_{\text{amb, circum}}} = \frac{1}{h_{\text{amb}} A_{\text{cover, k}}} \tag{3.48}
\]

\[
R_{h_{\text{mantle, circum, out}}} = \frac{1}{h_{\text{mantle}} b_{h_{\text{mantle, out}}} l_{\text{mantle}}} \tag{3.49}
\]

\[
R_{h_{\text{mantle, circum, in}}} = \frac{1}{h_{\text{mantle}} b_{h_{\text{store, out}}} l_{\text{mantle}}} \tag{3.50}
\]

with

- \(A \) Area \ [m^2]
- \(b \) Arc Length \ [m]
- \(c \) Heat Capacity \ [J kg\(^{-1}\) K\(^{-1}\)]
- \(d \) Diameter \ [m]
- \(dh \) Height Difference \ [m]
- \(dt \) Time Step \ [s]
- \(dT \) Temperature Difference \ [K]
- \(h \) Convective Heat Transfer \ [W m\(^{-2}\) K\(^{-1}\)]
- \(k \) Heat Conductivity \ [W m\(^{-1}\) K\(^{-1}\)]
- \(l \) Length \ [m]
- \(m \) Mass Flow Rate \ [kg s\(^{-1}\)]
- \(\dot{Q} \) Heat Flux \ [W]
- \(R \) Heat Resistance \ [K W\(^{-1}\)]
- \(s \) Chord Length \ [m]
- \(T \) Temperature \ [°C]
- \(V \) Volume \ [m\(^3\)]
- \(\rho \) Fluid Density \ [kg m\(^{-3}\)]
For the energetic calculations, exceptions for the first and last element have to be considered. At the first element, the heat conduction terms $Q_{out, collector}$ and $Q_{out, water}$ are set to zero. The temperature $T_{water,k-1}$ is equal to the water temperature from mains. At the top node, the heat conduction terms $Q_{in, collector}$ and $Q_{in, water}$ are zero. The temperature $T_{collector,k+1}$ is equal to the entering pipe temperature.

3.3.3 Pressure Drop Calculation

In the pressure drop calculation, the static pressure and the dynamic pressure losses of the hydraulic circuits - hot water and collector circuit - are calculated separately. The occurring pressure losses in the hot water circuit are not described in this chapter as these losses only influence the available tap pressure, respectively the maximum draw-off flow rate. The pressure losses of the collector circuit are crucial on the system performance as they are directly influencing the maximum flow rate and so the temperature – flow rate ratio.

In the mantle, a static pressure gain takes place as the inlet is located at the top annulus and the outlet at the bottom of the storage tank (equation (3.51)):
3 System Simulation

\[\Delta p_{\text{static}} = \sum_{k=1}^{n} \rho_{\text{fluid},k} g dh \]

(3.51)

with

- \(g \): Gravity \([\text{m s}^{-2}] \)
- \(\Delta p_{\text{static}} \): Static Pressure Difference \([\text{Pa}] \)
- \(\rho_{\text{fluid},k} \): Fluid Density at Node \(k \) \([\text{kg m}^{-3}] \)

The static pressure difference is added to the constant pressure part in the thermohydraulic vector. The dynamic pressure drop calculation takes diameter changes at the storage tank in- and outlet as well as bends and other obstacles into account (equation (3.52)):

\[\Delta p_{\text{dyn}} = \frac{\rho_{\text{fluid}}}{2} v_{\text{fluid}}^2 \sum \zeta \]

(3.52)

with

- \(\zeta \): Friction Coefficient \([-] \)
- \(\Delta p \): Pressure Drop \([\text{Pa}] \)
- \(v_{\text{fluid}} \): Velocity of the Fluid \([\text{m s}^{-1}] \)
- \(\rho \): Fluid Density \([\text{kg m}^{-3}] \)

The diameter changes and the corresponding velocity differences were evaluated by Konrad (2008). He concluded that the velocity inside the mantle for a typical double mantle heat exchanger storage tank is nearly zero, so friction losses in the double mantle can be neglected (Norton et al., 1992). Thus, a dynamic pressure drop only takes place at the inlet. According to Mannhart (2006) \(\zeta_{\text{in}} = 1 \) has to be set.

The friction coefficient \(\zeta_{\text{pipe}} \) of the piping depends on the design of pipe-storage connection. Typical values for \(\zeta_{\text{pipe}} \) can be found in the literature as shown in Figure 3.17 and have to be added to the overall friction coefficient.
The values of Δp_{dyn} are added to the overall quadratic system pressure loss as described in equation (3.53):

$$p_{\text{loss,qua}} = \frac{\Delta p_{\text{dyn}}}{m^2}$$ \hspace{1cm} (3.53)

with

- $p_{\text{loss,qua}}$: Quadratic Pressure Loss Value [Pa s² kg⁻²]
- Δp_{dyn}: Dynamic Pressure Drop [Pa]
- m: Mass Flow Rate [kg s⁻¹]

3.3.4 Model Validation

The storage tank model is validated in four steps. During the first step, the behaviour of the storage tank is tested in simulation to calculate realistic results. In a second verification simulation, the double mantle storage tank was directly compared to the validated simple storage tank model. To achieve nearly the same storage tank setup, the double mantle height and its material thickness are set to zero. The insulation characteristics of both systems are assumed to be identical. Both tanks are heated up to 60 °C. Afterwards, the systems are exposed to an ambient temperature of 20 °C and the cooling down phase is logged. The maximum deviation between the temperatures in the centre
node is 0.5 K which can be explained by the convective heat transfer calculation implemented into the double mantle storage tank.

In the third validation step, data of a system measured at the university’s test rig are brought into the simulation. The first comparison is made using the heat loss sequence of the 180 l reference storage tank beginning at a uniform temperature of 59.5 °C and taking about 18 h. Figure 3.18 compares both results for the centre (node) of the storage tank directly. The deviation between simulation and test shows a good correlation of below $\Delta T = 1$ K.

![Figure 3.18: Storage Tank Heat Loss Sequence Simulated and Measured](image)

In addition to the cooling down phase, a heating period and an evening draw-off are simulated. Input data for the simulation are the measured volume flow rates and the corresponding temperatures at double mantle and hot water storage. The results are very close to each other. Minor differences can be explained by the assumed storage tank conduction losses to the ambient. The wind dependent convection coefficient h_{amb} is a fixed value in the simulation while in reality the losses caused by wind are variable (Figure 3.19).
The last test performed in the validation section is the pressure drop calculation within the simulation. The calculation and measurements are carried out up to a flow rate of 400 l h⁻¹, a value exceeding the normal operating conditions by factor 8. Deviations between both pressure drop curves over the whole range are below 20 Pa.

3.4 Modelling and Validation of a System Tested in Ingolstadt

Related to the development is a reference system tested according to ISO 9459-2 (1995) at the university’s test rig. The system is especially designed for regions with medium irradiation values, like the northern part of the Mediterranean Basin. The main technical data are listed in Table 3.2. In order to validate the simulation additional measurement equipment was implemented in the reference system – a temperature sensor at the collector inlet and outlet and a magnetic inductive flow meter was included into the pipe from storage tank back to the collector inlet (Figure 3.20). The magnetic inductive flow meter is calibrated for low flow rates but introduces (due to its diameter of only 10 mm) an additional flow resistance to the thermosyphon system. This additional flow resistance is also included into the model validation.
Besides this method other direct flow measurements have been published in literature. Ong (1974, 1976) used a dye tracing method, Morrison (1980) a laser doppler anemometer and Bannerot et al. (1992) introduced a hydrogen bubble flow meter. This bubble flow meter was optimised and verified by Khalifa and Mehdi (1998).

The components described in chapter Table 3.3 are used to build up the reference system in the simulation environment. In order to validate the system simulation, the measurement data recorded during the outdoor tests are used as input values.

Figure 3.21 shows the simulation model composed of a solar collector, the double mantle heat exchanger storage tank, the interconnecting pipes and the thermosyphonic pump. All of these components are linked to each other via the thermo hydraulic vector (THV). Measurement data are fed into the system using the blocks ‘hot water consumption’ and ‘weather data’.
Table 3.2: Technical Data of the Reference System

<table>
<thead>
<tr>
<th>Collector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture Area</td>
<td>1.87 m²</td>
</tr>
<tr>
<td>Absorber Type</td>
<td>Steel Absorber with 35 Riser Ducts</td>
</tr>
<tr>
<td>Coating</td>
<td>Black Chrome (Medium Selective)</td>
</tr>
<tr>
<td>Transparent Cover</td>
<td>Heat-Strengthened Low Iron Glass</td>
</tr>
<tr>
<td>Insulation</td>
<td>55 mm Glass Wool</td>
</tr>
<tr>
<td>Tilt Angle</td>
<td>38 °</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage Tank</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Double Mantle Heat Exchanger Storage</td>
</tr>
<tr>
<td>Nominal Water Volume</td>
<td>180 l</td>
</tr>
<tr>
<td>Insulation</td>
<td>Eccentrically Expanded PU-Rigid Foam 12–35 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interconnecting Pipes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>22 x 1 mm Copper Pipes</td>
</tr>
<tr>
<td>Insulation</td>
<td>13 mm Elastomeric Foam</td>
</tr>
</tbody>
</table>

Figure 3.21: CARNOT Model of the Reference System

The simulation results show a good correlation between measured and simulated data, as can be seen in Figure 3.22 showing the flow rate and the accumulated flow through collector and storage over a whole test day.
After validating single measurement days, the annual energy output based on ISO 9459–2 (1995) is compared to the simulation output at the locations Ingolstadt and Rome. Both methods use artificial weather data as described in Chapter 3.5.2. The annual difference of the simulation compared to the normative calculation is in the range of 2-5 %. The simulation output is always below the normative calculation. This can be explained by the more complex variable calculation method of the CARNOT simulation, compared to the simplified assumptions like fixed values for the heat capacity and energetic calculations based on the daily irradiation in the model given in the standard.

3.5 Sensitivity Analysis of Thermosyphon Systems

Basis to the sensitivity analysis is the validated reference thermosyphon system. Typically, to maintain a high hot water comfort level even in times of adverse weather, a heating rod is included in the storage tank. Due to its negative influence on the annual solar fraction it is not modelled. The system simulated is a solar pre-heat system. To fully cover the hot water demand, a continuous-flow water heater is joined to the thermosyphon system. The flow heater only has to cover the temperature gap between storage tank outlet and 45 °C. For sunny periods with storage tank temperatures above 45 °C, a
thermostatic mixing valve is included in order to reduce the tap water temperature to the desired temperature of 45 °C. Such system setup is commercially available and corresponds to the state-of-the-art of modern thermosyphon systems (Figure 3.23). The achievable solar fraction is interpreted according equation (2.2).

![Figure 3.23: Operating Scheme of the Investigated Thermosyphon System with Flow Heater and Thermostatic Mixing Valve](image)

The aim of the sensitivity analysis is to determine the overall performance defined as a function of collector design, storage tank design and system configuration as shown in equation (3.54):

\[
\eta_{\text{system}} = f(\text{collector}_{\text{fictive}}, \text{storage}_{\text{fictive}}, \text{configuration}_{\text{fictive}})
\]

(3.54)

with

- \(\eta_{\text{system}}\): Overall System Performance [-]
- \(\text{collector}_{\text{fictive}}\): Varied Collector Parameters [-]
- \(\text{storage}_{\text{fictive}}\): Varied Storage Parameters [-]
- \(\text{configuration}_{\text{fictive}}\): Investigated System Configuration [-]

Variations in the daily hot water demand directly influence the overall system performance and the results of the sensitivity analysis. To reduce the breadth of the sensitivity analysis, the draw-off pattern is fixed to the values described in Chapter 3.5.1.
3 System Simulation

Based on the reference system, parameter variations in a fixed bandwidth are defined for each of the parts of the thermosyphon system. The most promising system setup, composed of optimised parts is compared to the reference system to evaluate the optimisation potential.

3.5.1 Hot Water Consumption

Adapted to common simulation tools, the simulated daily hot water demand corresponds to a Central European 3–4 person household at a total amount of 2,540 kWh a\(^{-1}\). During the day, three draw-offs take place, in the morning, during midday and in the evening. Additionally, daily and seasonal variations, taking a reduced hot water demand during summer times into account, are considered. The cold water from mains follows a sinusoidal trend with 8 °C in February and 12 °C in August (Figure 3.24 and Figure 3.25).

Figure 3.24: Draw-off Patterns at Working Days and Weekend
As no country specific data are available, the Central European hot water profile is used for all geographic locations considered in the simulation.

3.5.2 Influence of Different Climatic Conditions on the System Performance

Thermosyphon systems have to be operated using various water/antifreeze mixing ratios depending on the geographic/climatic conditions. A low antifreeze ratio has a positive influence on the energetic/hydraulic behaviour of the solar-thermal system (cf. Chapter 2.2.5). On this background, the sensitivity analysis is carried out using three climatic different European locations:

- **Ingolstadt, Germany**, is included as northernmost location with typical central European weather conditions \(G_{\text{hor}} = 1,118 \text{ kWh m}^{-2} \text{ a}^{-1}; T_{\text{amb}} = 8.8 \, ^{\circ}\text{C}\). The institute’s test rig is located there, which will be used to carry out measurements with the prototype. The working fluid used for this location is a 60/40 water/propylene glycol mixture which allows ambient temperatures of about -15°C in winter (Figure 3.26).
Rome, Italy, is a location with a moderate southern European climate ($G_{hor} = 1,559 \text{ kWh m}^{-2} \text{ a}^{-1}$; $T_{amb} = 15.6 \degree \text{C}$). Even in winter times, there are only very few days with frost (Figure 3.27). A 90/10 water/propylene glycol mixture is sufficient for a safe system operation throughout the year.

Malaga, Spain, has a typical southern European climate with a high amount of solar irradiation at high average temperatures and without a real risk of frost ($G_{hor} = 1,792 \text{ kWh m}^{-2} \text{ a}^{-1}$; $T_{amb} = 18.2 \degree \text{C}$). No antifreeze protection is needed. In order to protect the thermosyphon system, it is recommended to run the system with corrosion protection (Figure 3.28).
For the weather data generation, Meteonorm 6.0 (Remund et al., 2006), a meteorological database is used. The data basis for this software is a worldwide network of weather stations. In order to calculate weather data for any location, various mathematical models are included, which are extrapolating the given data. To achieve realistic weather data, the distance from the extrapolated locations to the destination has to be taken into consideration.

The output format of Meteonorm is TRY (Test-Reference-Year). The TRY data are brought into a CARNOT compatible format using an enhanced MATLAB m-script.

3.5.3 Indication of Relevant Collector Parameters

Within the scope of the collector optimisation, the significant absorber design parameters (pressure drop, absorber efficiency and heat capacity), the optical properties (transmission-absorption product, incidence angle modifier), the heat losses as well as geometric dimensions (aperture area and length/width ratio) are varied and simulated. The relevant parameters are listed in Table 3.3 in detail including minima and maxima values, step size, affected design parameter and source.

3.5.4 Storage Tank Parameters

Regarding the storage tank, four relevant parameters are found: the storage tank volume (relative to the collector aperture area), the characteristics of the heat exchanger (heat
exchanger volume and surface area) and the insulation (material and thickness) as described in Table 3.6.

3.5.5 System Configuration

Besides the two major components of a thermosyphon system, the solar collector and the storage tank, the system configuration has a major influence on the energetic performance and the aesthetic appearance. The energy performance is affected by the pipe dimensioning (length and diameter), the piping between storage tank and solar collector, the height ratio between collector and storage tank as well as the system orientation, i.e. collector azimuth and incidence slope (Table 3.5). The collector azimuth is a user-dependent factor and not a design factor. Nevertheless, it is varied to document the dependency of the annual energy output on the system orientation.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min / Max Value</th>
<th>Step Size</th>
<th>Model Parameter</th>
<th>Design Parameter</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Drop</td>
<td>969–31,682</td>
<td>5,000</td>
<td>x_1 [Pa s kg$^{-1}$]</td>
<td>Absorber Design</td>
<td>Market Report Solar Thermal Collectors (Ellinghaus, 2007); (Drück 2011)</td>
</tr>
<tr>
<td></td>
<td>15,068–75,000</td>
<td>15,000</td>
<td>x_2 [Pa s2 kg$^{-2}$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5x106–20x106 (meander type)</td>
<td>5x106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Size / Tank Size Ratio</td>
<td>2.58–30.95</td>
<td>2.58</td>
<td>$\frac{A_{\text{col}}}{V_{\text{store}}}$ [m2]</td>
<td>Collector Size (0.46-5.57 m2) + Tank Volume at Constant Tank Volume of V_{store} = 180 l</td>
<td>Market Analysis (Brandmayr, 2006)</td>
</tr>
<tr>
<td>Collector Shape</td>
<td>1.00–2.50</td>
<td>0.25</td>
<td>l_{col} [m]</td>
<td>Collector Length / Collector Width Ratio at Constant Area A_{col} = 1.87 m2</td>
<td>Market Analysis (Brandmayr, 2006)</td>
</tr>
<tr>
<td></td>
<td>0.74–1.87</td>
<td>1.87x</td>
<td>w_{col} [m]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Performance 1</td>
<td>0.612–0.909</td>
<td>0.05</td>
<td>η_0 [-]</td>
<td>Zero Loss Efficiency Influenced by Characteristics Collector Cover (τ) and Coating (absorption α) and the Absorber Design Factor F'</td>
<td>Transparent Cover Materials (Frei, 1998); Solar Glass (Flückinger, 2007), Absorber Coatings (Treikauskas, 2005; COLOR, 2009)</td>
</tr>
<tr>
<td>Collector Performance 2</td>
<td>2.4–6.2</td>
<td>0.5</td>
<td>a_1 [W m$^{-2}$ K$^{-1}$]</td>
<td>Collector Design (type and amount of insulation, collector design parameters)</td>
<td>Market Report Solar Thermal Collectors (Ellinghaus, 2007)</td>
</tr>
<tr>
<td></td>
<td>0.004–0.1</td>
<td>0.014</td>
<td>a_2 [W m$^{-2}$ K$^{-2}$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Performance 3</td>
<td>0.5–0.97</td>
<td>0.05</td>
<td>$k_{i_{50}}$ [-]</td>
<td>Incidence Angle Modifier (characteristics of collector cover + absorber)</td>
<td>Market Report Solar Thermal Collectors (Ellinghaus, 2007); Range 0.5-0.8 Fictive</td>
</tr>
<tr>
<td>Collector Heat Capacity</td>
<td>2,000–26,000</td>
<td>4,000</td>
<td>c_{col} [J m$^{-2}$ K$^{-1}$]</td>
<td>Amount of Fluid Inside Absorber and Thermal Mass of Collector</td>
<td>Market Report Solar Thermal Collectors (Ellinghaus, 2007), Min, Max Values Own Values</td>
</tr>
</tbody>
</table>
3 System Simulation

Table 3.4: Storage Tank Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min / Max Value</th>
<th>Step Size</th>
<th>Model Parameter</th>
<th>Design Parameter</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Size / Collector Size Ratio</td>
<td>5.26–23.69 m³</td>
<td></td>
<td>(\frac{A_{\text{col}}}{V_{\text{store}}}) [m⁻¹]</td>
<td>Tank Volume at Constant Collector Area (A_{\text{col}} = 1.87 \text{ m}^2) and Storage Diameter of (d_{\text{store}} = 0.392 \text{ m})</td>
<td>Market Analysis (Brandmayr, 2006)</td>
</tr>
<tr>
<td>Inner Storage Diameter</td>
<td>1.35–5.35 m</td>
<td>1.00</td>
<td>(\frac{l_{\text{store}}}{d_{\text{store}}}) [-]</td>
<td>Storage Length and Diameter at Constant Tank Volume of (V_{\text{store}} = 180 \text{ l})</td>
<td>Market Analysis (Brandmayr, 2006)</td>
</tr>
<tr>
<td>Heat Exchanger Capacity</td>
<td>0.004–0.014 m²</td>
<td>0.002</td>
<td>(z_{\text{spacing}}) [m]</td>
<td>Heat Exchanger Capacity Adapted by Variation of Heat Exchanger Spacing</td>
<td>Market Analysis (Brandmayr, 2006)</td>
</tr>
<tr>
<td>Heat Exchanger Surface</td>
<td>0.4–1.2 m²</td>
<td>0.2</td>
<td>(A_{\text{exch}}) [m²]</td>
<td>Surface of the Used Double Mantle Heat Exchanger</td>
<td>Market Analysis (Brandmayr, 2006)</td>
</tr>
<tr>
<td>Insulation Thickness</td>
<td>0.01–0.10 m</td>
<td>0.02</td>
<td>(z_{\text{ins}}) [m]</td>
<td>Insulation Thickness at Constant Heat Conductivity of 0.045 W m⁻¹ K⁻¹</td>
<td>Market Analysis (Brandmayr, 2006)</td>
</tr>
</tbody>
</table>

Table 3.5: System Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min / Max Value</th>
<th>Step Size</th>
<th>Model Parameter</th>
<th>Design Parameter</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Pipe Diameter</td>
<td>0.006–0.025 m</td>
<td>0.002</td>
<td>(d_{\text{pipe}}) [m]</td>
<td>Tube Diameter</td>
<td>Commonly Available Tubes</td>
</tr>
<tr>
<td>Pipe Insulation</td>
<td>0–0.035 m</td>
<td>0.005</td>
<td>(z_{\text{ins}}) [m]</td>
<td>Influence of the Tube Insulation on the System Output</td>
<td>Commonly Available Insulation</td>
</tr>
<tr>
<td>Collector Storage Height Ratio</td>
<td>-0.40 – 1.00 m</td>
<td>0.2</td>
<td>(z_{\text{add}}) [m]</td>
<td>Optical system appearance / Collector – Storage Connection</td>
<td>Literature Review (Vaxman, 1986, Scheller, 1985)</td>
</tr>
<tr>
<td>Collector Tilt Angle</td>
<td>10–80 °</td>
<td>10</td>
<td>(\gamma_{\text{tilt}}) [°]</td>
<td>Optimal System Performance for Each Climatic Condition</td>
<td>Typical Tilt Angles for Pumped Systems</td>
</tr>
<tr>
<td>System Azimuth</td>
<td>-60 – +60 °</td>
<td>15</td>
<td>(\alpha) [°]</td>
<td>Influence of System Orientation on Annual Energy Output</td>
<td>Typical System Orientation</td>
</tr>
</tbody>
</table>
3.5.6 Simulation Results

Based on the annual energy output of the thermosyphon system, the results of the sensitivity analysis are interpreted based on the annual solar fraction as defined in equation (2.2). A detailed investigation in steps of a few minutes is also possible and in some cases necessary, e.g. for the analysis of the collector pressure drop. A fact that has to be emphasised is that most of the optimum values are independent of the respective geographic location. Table 3.6 shows the weighted classification of the simulation results for Malaga. Column one and two describe the varied parameter; the third column identifies either the directly or indirectly affected component and the fourth column gives an overview of the influence on the annual solar fraction for Malaga. A detailed discussion of the simulation results can be found in Chapter 4.

Table 3.6: Weighted Simulation Results for Malaga

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model Parameter</th>
<th>Affected Component</th>
<th>Bandwidth of Solar Fraction for Malaga</th>
<th>Degree of Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Size</td>
<td>A_{col}</td>
<td>Collector</td>
<td>28.9 – 91.7 %</td>
<td></td>
</tr>
<tr>
<td>Pipe Insulation</td>
<td>z_{ins}</td>
<td>System</td>
<td>41.9 – 69.9 %</td>
<td></td>
</tr>
<tr>
<td>Zero Loss Efficiency</td>
<td>η_0</td>
<td>Collector</td>
<td>58.3 – 75.2 %</td>
<td></td>
</tr>
<tr>
<td>Collector Tilt Angle</td>
<td>γ_{tilt}</td>
<td>System</td>
<td>54.3 – 69.3 %</td>
<td></td>
</tr>
<tr>
<td>Storage Tank Insulation</td>
<td>z_{ins}</td>
<td>Storage Tank</td>
<td>59.8 – 74.2 %</td>
<td></td>
</tr>
<tr>
<td>Incidence Angle Modifier</td>
<td>k_{i50}</td>
<td>Collector</td>
<td>59.3 – 69.8 %</td>
<td>High</td>
</tr>
<tr>
<td>Inner Pipe Diameter</td>
<td>d_{pipe}</td>
<td>System</td>
<td>62.7 – 72.1 %</td>
<td></td>
</tr>
<tr>
<td>Collector Storage Height Ratio</td>
<td>z_{add}</td>
<td>System</td>
<td>65.7 – 71.9 %</td>
<td>Medium</td>
</tr>
<tr>
<td>Linear Heat Loss Coefficient (Collector Performance)</td>
<td>a_1</td>
<td>Collector</td>
<td>64.9 – 70.75 %</td>
<td></td>
</tr>
<tr>
<td>Quadratic Pressure Drop Coefficient</td>
<td>x_2</td>
<td>Collector</td>
<td>62.5 – 67.9 %</td>
<td></td>
</tr>
<tr>
<td>Collector Shape (Length at Given Area)</td>
<td>l_{col}</td>
<td>Collector</td>
<td>64.0 – 69.0 %</td>
<td></td>
</tr>
<tr>
<td>Storage Volume</td>
<td>V_{store}</td>
<td>Storage Tank</td>
<td>64.3 – 69.2 %</td>
<td></td>
</tr>
<tr>
<td>Storage Tank Diameter (at 180 l)</td>
<td>d_{store}</td>
<td>Storage Tank</td>
<td>65.8 – 70.0 %</td>
<td></td>
</tr>
<tr>
<td>Heat Exchanger Area</td>
<td>A_{exch}</td>
<td>Storage Tank</td>
<td>64.9 – 68.5 %</td>
<td></td>
</tr>
<tr>
<td>Linear Pressure Drop Coefficient</td>
<td>x_1</td>
<td>Collector</td>
<td>65.8 – 68.0 %</td>
<td></td>
</tr>
<tr>
<td>Heat Capacity Collector</td>
<td>c_{col}</td>
<td>Collector</td>
<td>68.0 – 69.1 %</td>
<td></td>
</tr>
<tr>
<td>Quadratic Heat Loss Coefficient (Collector Performance)</td>
<td>a_2</td>
<td>Collector</td>
<td>67.1 – 69.9 %</td>
<td></td>
</tr>
<tr>
<td>Heat Exchanger Spacing</td>
<td>z_{gap}</td>
<td>Storage Tank</td>
<td>68.1 – 68.5 %</td>
<td></td>
</tr>
</tbody>
</table>
3.6 Building up and Simulation of the Most Promising System Configuration

By combining the results of the sensitivity analysis to a most promising system setup, the annual hot water fraction can be raised by 15 percentage points up to 85% for the location Malaga as compared to the reference system. This system setup differs from the state-of-the-art as the aperture area is increased to 2.35 m² and the storage tank volume is decreased to 165 l. The height between storage tank and solar collector is set to 0, as the physical approach to avoid reverse thermosyphoning is applied in this new system setup. The relevant technical data are summarised in Table 3.7.

Table 3.7: Technical Data of the Most Promising System Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Model Parameter</th>
<th>Design Parameter</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Drop</td>
<td>3,700</td>
<td>x_1 [Pa s kg$^{-1}$]</td>
<td>Absorber Design (Harp Absorber)</td>
<td>Reference Collector / Sensitivity Analysis</td>
</tr>
<tr>
<td></td>
<td>56,545</td>
<td>x_2 [Pa s² kg$^{-2}$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Size / Collector Shape</td>
<td>2.35 (2.134×1.104)</td>
<td>A_{col} [m²]</td>
<td>Collector Size</td>
<td>Optimum Ratio of Storage Volume Tank and Collector Area</td>
</tr>
<tr>
<td>Collector Performance</td>
<td>0.812</td>
<td>η_0 [-]</td>
<td>Collector Efficiency</td>
<td>Reference Collector / Sensitivity Analysis</td>
</tr>
<tr>
<td></td>
<td>3.52</td>
<td>a_1 [W m$^{-2}$ K$^{-1}$]</td>
<td>Collector Efficiency</td>
<td>Reference Collector / Sensitivity Analysis</td>
</tr>
<tr>
<td></td>
<td>0.019</td>
<td>a_2 [W m$^{-2}$ K$^{-2}$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank Size</td>
<td>165</td>
<td>V_{store} [m³]</td>
<td>Tank Dimensions</td>
<td>Sensitivity Analysis</td>
</tr>
<tr>
<td>Inner Storage Diameter</td>
<td>500</td>
<td>d_{store} [mm]</td>
<td>Storage Length and Diameter</td>
<td>Sensitivity Analysis and Collector Width</td>
</tr>
<tr>
<td>Heat Exchanger Surface</td>
<td>1.0</td>
<td>A_{exch} [m²]</td>
<td>Surface of the Used Double Mantle Heat Exchanger</td>
<td>Sensitivity Analysis</td>
</tr>
<tr>
<td>Insulation Thickness</td>
<td>0.04</td>
<td>z_{ins} [m]</td>
<td>Insulation Thickness</td>
<td>Sensitivity Analysis / Technical, Economical Optimum</td>
</tr>
<tr>
<td>Inner Pipe Diameter</td>
<td>0.013</td>
<td>d_{pipe} [m]</td>
<td>Tube Diameter</td>
<td>Sensitivity Analysis</td>
</tr>
<tr>
<td>Pipe Insulation</td>
<td>0.02</td>
<td>z_{ins} [m]</td>
<td>Influence of the Tube Insulation on the System Output</td>
<td>Sensitivity Analysis / Technical and Economic Optimum</td>
</tr>
<tr>
<td>Collector / Storage Height Ratio</td>
<td>0.00</td>
<td>z_{add} [m]</td>
<td>Optical system appearance / Collector – Storage Connection</td>
<td>Reverse Thermosyphoning Prevention</td>
</tr>
<tr>
<td>Collector Tilt Angle</td>
<td>35</td>
<td>γ_{tilt} [°]</td>
<td>Optimum System Performance</td>
<td>Sensitivity Analysis</td>
</tr>
</tbody>
</table>
The analysis of the monthly hot water fraction reveals a performance plus of 20% during spring and autumn compared to the reference system. In summer times, 100% of the hot water is supplied by the thermosyphon system as shown in Figure 3.29.

![Graph showing monthly hot water fraction comparison between New System Setup and Reference System.](image)

Figure 3.29: Annual Hot Water Fraction of Reference System and the New System Setup

The daily maximum mass flow rate is in the range of 40–45 kg h\(^{-1}\), while the reference system works at values of up to 66 kg h\(^{-1}\). This difference is caused by various effects. The new system setup assumes 0 mm height difference between collector and storage tank and the interconnecting pipes are narrowed from 20 mm to 13 mm. The storage tank is well stratified due to the reduced flow rate. In summer times, the gap between the top temperature and the measurement point at 75% height is in the range of 15 K. The maximum storage tank temperature is 96 °C.
4 Design and Construction

In the design and construction phase, the outcomes of the market and competition survey as well as the literature review (cf. Chapter 2) and the sensitivity analysis (cf. Chapter 3.5) are brought together. The result of this project stage was a two circuit thermosyphon system prototype, which was tested in the university’s laboratories.

The prototype system consists out of a full aluminium collector with 30 mm mineral wool insulation and 2.34 m² aperture area. Collector in- and outlet are piped through the top of the collector casing. The collector tilt angle is set to 35 °. The system is a close-coupled system however 80 mm spacing between collector and storage tank is necessary for installation reasons. The storage tank is a double mantle heat exchanger storage tank with 165 l tap water and an internal expansion vessel. To maintain the stratification during drawing-off water a cold water diffuser is implemented in the storage tank (Figure 4.1).

![Figure 4.1: Main Technical Specifications of the Prototype System](image)

4.1 Design of Collector and Storage Tank

The design of the collector and storage tank prototype is mainly driven by the outcomes of the sensitivity analysis and reflects the data of the most promising “New System Setup”. Some of the optimum combinations found and simulated in Chapter 3.6 are, however, technically not applicable. An example for such a non-applicable measure is a double mantle gap height of 4 mm. Such a system benefits from a small heat transfer fluid volume resulting in a reduced expansion volume demand and an enhanced operation safety — but cannot be manufactured due to the tolerances of the welding process.
4 Design and Construction

4.1.1 Collector Prototype

The collector size has a major influence on the annual solar fraction. An increased aperture area always comes along with an increased annual solar fraction, but is more likely to cause overheating problems. Furthermore, the production costs of the collector are directly dependent on the collector size. In the simulation, the aperture area is varied from 0.5–5.6 m² at a constant storage tank volume of 180 l.

Against this background, the evaluation of the simulation results is done using two parameters, solar fraction and secure system operation. The system operation is defined to be secure as long as the storage tank temperature at the given draw-off profile does not exceed 90 °C. Under the climatic conditions of Malaga, this security criterion is exceeded at an aperture area of 2.8 m² or a minimum storage tank volume to aperture area ratio of 65 l m⁻² (Figure 4.2).

To determine the optimum shape of the prototype collector, the width to length ratio is varied at the given reference aperture area of 1.87 m². The simulation results at Ingolstadt and Rome show no dependency on the solar fraction of collector length to width. At Malaga, slender but long collectors offer an energetic advantage during winter times.
(Figure 4.3). It can be concluded, the standard collector length to width ratio of 2:1 is also suitable for thermosyphon systems.

Moving away from the absorber’s geometrical dimensions, the analysis clearly shows the necessity of a zero loss efficiency above \(\eta_0 = 0.80 \) as realised in the reference system. The simulation model uses input data out of system tests according EN 12975-2 (2006). The standard uses the mean collector temperature as for the calculation of the collector efficiency. According to equation (2.21) the zero loss efficiency is the product out of the collector efficiency factor \(F' \) and the transmission absorption product \((\tau \alpha) \). The 0.80 zero loss efficiency can be reached using a transparent cover with a high transmission value \(\tau \geq 0.91 \) such as low iron glass (cf. Chapter 2.2.2). Long-term stable polymer covers, such as PMMA with a transmission of \(\tau = 0.84 \) are not recommended. The coating is to have an absorption value of about \(\alpha = 0.95 \), just like high selective or black chrome coatings, and the hydraulic design of the collector is to have a collector efficiency factor of more than \(F' = 0.92 \) (Figure 4.4).
An analysis of the collector’s operating regime within simulation and on the test rig reveals a peak around the zero loss efficiency of the collector with minor thermal losses (Figure 4.5). This peak is calculated based on the reduced collector temperature\(^4\) (equation (2.22)). From the collector efficiency curve of a typical selective coated flat-plate collector which is included in Figure 4.5, it can be seen that the thermal losses of the collector in thermosyphon systems are not that important. The simulation results of different coatings from highly selective materials down to solar painting lead to the suggestion of using a medium selective coating material like black chrome. Black chrome coatings have a typical emission coefficient of about \(\varepsilon = 0.15\).

\(^4\) The reduced collector temperature is usually used in collector certificates according to DIN EN 12975-2 (Deutsches Institut für Normung, 2006) in order to achieve comparability of measurement results for different collectors.
Besides the cover and the coating, the insulation of the collector (ref. Table 3.6) moderately influences the system efficiency. Thus, a reduced insulation thickness of 30 mm, only on the back side of the absorber is fully suitable for the prototype collector. Solar collectors used in central Europe are insulated with 40–50 mm at the backside and 10–20 mm at the casing. The variation of the temperature dependent heat loss coefficient \(a_2 \) has nearly no influence on the system efficiency, as the system is normally operated at temperatures below 90 °C. At these temperatures, linear losses influenced by coefficient \(a_1 \) dominate.

Regarding the cost reduction potential, the impact of the insulation is rather low, approximately 9 % (Mangold, 1996), but directly affects the necessary height of the collector casing. The height of the collector can be reduced by up to 20 mm. This comes along with a weight advantage of 2–4 kg depending on the frame profile geometry. The related cost advantage depends on the casing material used.

The last parameter varied within the collector optics is the incidence angle modifier. This factor describes the efficiency reduction due to a non-perpendicular irradiation onto the collector (cf. Chapter 3.2.2.1). At an irradiation angle of \(\theta = 50 \) ° the incidence angle mod-
ifier of flat-plate collectors is in the range of 0.85–0.95. This bandwidth influences the annual energy output by maximum 2.5 % (Figure 4.6).

![Figure 4.6: Influence of the Incidence Angle Modifier on the Solar Fraction](image)

Values below 0.85 require further material research and are only applicable if solar energy is needed at a certain point of a day or to prevent the solar-thermal system from overheating. For the development of the thermosyphon solar collector, this research is not necessary as overheating can be prevented by a good storage tank volume to aperture area ratio.

The collector capacity affected by the materials used and above all by the fluid inside the absorber, has no influence on the system’s annual energy output. On the one hand, a small capacity often comes along with a reduced material usage in the collector and a fast reaction to alternating weather conditions. On the other hand, the material used for the absorber piping can only be reduced to a certain extent as a material reduction is accompanied by reduced pipe diameters. A small pipe diameter leads to higher pressure losses inside the collector and to a reduced mass flow rate in the system. With regard to this material reduction potential and the annual energy output, the pressure drop was simulated with absorbers ranging from header-riser absorbers to meander type absorbers. The results show minor differences in the range of 0–5 % between the minima and maxima values for both collector types (Figure 4.7 and Figure 4.8) and as a result of that
the question arose whether meander type collectors might also be suitable for thermosyphon systems.

Figure 4.7: Variation of the Linear Pressure Loss Coefficient for Different Absorber Types

Figure 4.8: Variation of the Quadratic Pressure Loss Coefficient for a) Harp and b) Meander Absorbers

A detailed post processing of the simulation results at cloudy conditions shows very small mass flow rates of only 10–14 kg h⁻¹ at a temperature difference of 60–70 K for the me-
ander type absorber. This leads to a highly stratified storage tank and thus, to no energetic penalty compared to the header-riser absorber system. The flow rate of the header-riser absorber at the same conditions is in the range of 35–45 kg h⁻¹, with a typical temperature rise of 20–30 K. In summer times with irradiation values into the collector plane of above 1,000 W m⁻², the meander type collector tends to overheat as the simulated collector outlet temperatures reach 100–120 °C. This simulated behaviour of both absorber types is experimentally validated with two nearly identical thermosyphon systems placed under the university’s solar simulator. One collector has a meander type and the other one a header-riser absorber with 10 riser tubes. The measured results are in good accordance to the simulation results. Due to the operation characteristics and the overheating problems, the header-riser type absorber is selected for the further development.

To avoid reverse thermosyphoning, the physical approach published by Scheller (1985) as described in Chapter 2.2.1 is applied. The return pipe is located inside the collector casing just below the absorber (without touching it). Additionally, the collector outlet is piped through the top of the collector casing. This leads to 90° bends in the upper and lower header resulting in asymmetrical outer absorber fins (Figure 4.9) as a certain offset between bend and riser tube is needed for the manufacturing process.

Figure 4.9: Scheme of the Absorber Proposed
The collector efficiency factor F' is calculated analogous to Chapter 2.2.2. A variation of 8-14 riser pipes at a given collector width of 1,101 mm is considered. The results show a theoretical collector efficiency factor in the range of $F' = 0.833–0.950$. As 12 riser tubes already result in $F' = 0.944$, 12 riser tubes are taken into account for the further development. The optimum fin width for the inner absorber fins is calculated to $w_{\text{fin}} = 90$ mm (87 mm were technically feasible for the welding process).

Besides a technical optimisation, a closer look at cost reduction potentials is taken. Mangold (1996) conducted a detailed investigation concerning collector production costs. This survey was shown by Treikauskas (2005) to be transferrable on to a modern collector production. The biggest cost reduction potential can be found on the absorber side. By changing the normally used absorber material copper to 100 % aluminium, there is the possibility to reduce the absorber weight in the range of 2.5–3.0 kg (for a 2.5 m² collector). Bigger wall thicknesses for the piping and a 0.5 mm thick absorber-plate for the aluminium type are considered. The use of aluminium pipes is possible as new corrosion resistant aluminium solar alloys have been successfully tested and are available on the market (Holle, 2011). Holle predicts cost savings of 62 % using aluminium for the collector piping. This percentage is realistic as raw material prices for aluminium are only at 30–40 % of those for copper. The technical data of the proposed collector are summarised in Table 4.1.

Table 4.1: Technical Data of the Proposed Collector

<table>
<thead>
<tr>
<th>Absorber Type</th>
<th>Sheet–Pipe Absorber with 12 Riser Tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorber Material</td>
<td>100 % Aluminium (Absorber and Piping)</td>
</tr>
<tr>
<td>Aperture Area</td>
<td>2.34 m² (1,101 mm x 2,125 mm)</td>
</tr>
<tr>
<td>Insulation</td>
<td>30 mm Mineral Wool</td>
</tr>
<tr>
<td>Glazing</td>
<td>Heat Strengthened Low Iron Glass</td>
</tr>
<tr>
<td>Coating</td>
<td>Selective Coating with Medium Emission Coefficient</td>
</tr>
</tbody>
</table>

4.1.2 Storage Tank Prototype

Direct thermosyphon systems are thermodynamically more efficient but come along with the major disadvantage that storage tank and solar collector operate within one single circuit, as described in the market and competition analysis (cf. Chapter 2.1). Additional-
ly, the decision to incorporate regions with frost (cf. Chapter 3.5.2) in the sensitivity analysis and the proposed full aluminium absorber design (cf. Chapter 2.2.2), results in the necessity that the storage tank prototype is to be a two-circuit double mantle heat exchanger storage. A further advantage of the separation of collector and water circuit is the possibility to operate the solar collector below the tap water pressure. The mantle material used for the prototype is mild steel. Häfner (2009) described a cost driven trend from stainless steel back to enamelled mild steel, representing 70 % of the total produced thermosyphon systems’ storage tanks in 2009. The choice of mild steel is based on different reasons. The price for copper is even above stainless steel and based on its heat conductivity, which is eight-times higher than that of mild steel, has a negative influence on the thermocline inside the storage tank (cf. Chapter 2.2.3). Standard polymeric materials, like polyethylene, and polypropylene could have a positive influence on the thermocline, as the heat conductivity is found to be factor 1,000-2,000 below that of copper. By applying the standard boiler formula material thicknesses for polymeric materials in the range of 5.6–11.3 mm are required for a pressurised storage tank operated up to 9 bar. The required wall thickness, however, works like insulation against the heat flux from the double mantle heat exchanger (Table 4.2), hence mild steel is preferred.

<table>
<thead>
<tr>
<th>Material</th>
<th>R_e [N mm$^{-2}$]</th>
<th>z_{min} [mm]</th>
<th>k [W m$^{-1}$ K$^{-1}$]</th>
<th>h_{eff} [W m$^{-2}$ K$^{-1}$]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>300–400</td>
<td>1.1–1.5</td>
<td>385</td>
<td>2.5–3.5e5</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>185</td>
<td>2.4</td>
<td>14</td>
<td>5.8e3</td>
</tr>
<tr>
<td>Mild Steel</td>
<td>185–355</td>
<td>1.3–2.4</td>
<td>~48</td>
<td>2.0–3.6e4</td>
</tr>
<tr>
<td>Polymeric Materials (PE, PP, PMMA, PET)</td>
<td>40–80</td>
<td>5.6–11.3</td>
<td>0.15–0.35</td>
<td>13–62.5</td>
</tr>
</tbody>
</table>

*for a straight wall

Detailed studies of market-available storage tanks show promising design aspects regarding the operation safety and an optimised operation of thermosyphon systems. Vulcano (2008) implements a simple 3 l volume expansion vessel in the storage tank as shown in Figure 4.10.
This expansion vessel prevents the system from a pressure rise to the release level of the relief pressure valve during operation and so enhances the operation safety at high fluid temperatures. A modified version of this concept was adapted to the prototype as shown in Figure 4.11. The expansion vessel was located at the inside of the hot water section and made out of a smaller dished boiler end.
A measure to optimise the operation of thermosyphon systems is implemented by Sammler (2008). Sammler positions all connections for collector fluid and water at the storage tank bottom, which offers two advantages. On the one hand an aesthetical system setup can be achieved as the piping can be installed concealed from view. On the other hand, this connection type is suitable to prevent reverse thermosyphoning as no temperature difference between collector inlet and outlet arises (cf. Chapter 2.2.1). The prototype employed the same connection scheme with hydraulic improvements (Figure 4.12).

Generally, the stratification inside the hot water section is rapidly destroyed while drawing water. This malfunction, caused by the inlet design of the storage tank, was countered by
using a cold water diffuser. Chapter 5.2 describes the optimisation measures concerning the diffuser in detail.

The sensitivity analysis shows a technical and economic optimum of 50 mm PU foam insulation. An increase of the insulation thickness to 70 mm resulted in an energetic improvement of less than 1.5 %, however, an additional insulation material demand of 45 % (for a storage tank with 520 mm diameter). A reduction of the insulation thickness to 30 mm came along with an energetic penalty of 3 % compared to 50 mm and is not recommended (Figure 4.13). For the prototype, an insulation thickness of 40 mm (areas with double mantle) to 50 mm (areas without double mantle) was chosen.

Figure 4.13: Simulation of the Storage Tank Insulation

Figure 4.14 shows the simulation results for a variation of the heat exchanger surface. Independent of the location simulated, a performance increase cannot be seen above 1 m² heat exchanger area.
The heat exchanger spacing has no influence on the annual system performance. It only has an impact on the heat exchanger volume. In terms of tank production, a spacing of 10 mm is suitable (Figure 4.15).
The investigations concerning the inner storage tank diameter result in a recommended minimum diameter of 450 mm. A detailed analysis of this result points to the improved stratification due to a bigger diameter. Independent of the location, diameters above 450 mm improve the annual solar fraction by less than 1 % (Figure 4.16).

![Figure 4.16: Simulated Storage Tank Diameter Variation](image)

Concerning the optimum tap water volume, the sensitivity analysis indicates an optimum storage tank volume to collector aperture area of 65 l·m⁻². This value is in absolute conformity to the collector development (Chapter 4.1.1). For the given reference model, a 120 l storage tank performs better than the used 180 l storage tank, as shown in Figure 4.17. For the prototype with 2.34 m² the optimum storage tank volume is 160 l. For aesthetical reasons, the overall storage tank width is aligned to the collector width resulting in an inner storage tank diameter of 500 mm.
4.2 Detailed Design of the System–Prototype

The system design is initiated with the analysis of the collector to storage tank height ratio. The bandwidth of the height variation is 1,400 mm, beginning with a collector outlet at the same height as the storage tank inlet (Figure 4.18; BD = -400 mm).
Figure 4.18: Minimum Storage Tank Height

The maximum height difference BD is +1,000 mm as shown in Figure 4.19.

Figure 4.19: Typical Storage Tank to Collector Ratio

Beforehand to the simulation, Figure 4.18 and 4.16 can be used to describe the expected thermosyphonic flow rates analytically at a stationary working point. Starting at collector inlet (A), the fluid is heated due to solar irradiation. The density decreases as shown in the diagram on the right side (A to B). The piping from collector outlet to storage tank inlet is lossless, so no density changes occur from B to C. Within the storage tank the heat carrier fluid cools down to the temperature at the collector inlet, so the density increases from C to D. The piping from storage tank outlet to collector inlet is assumed to be lossless (path D to A). The vectors form a closed area which is an indicator of the system
buoyancy. The bigger the height difference BD, the bigger the flow rate at a reduced
temperature difference between collector in- and outlet.

The simulation results reflect this theoretical approach. Systems with a low storage tank
position work at a high temperature difference at a low flow rate, whereas systems with a
high storage tank position work at relatively low temperatures compared with a high mass
flow rate. Concerning the annual solar fraction, a low system setup outperforms the sys-
tems with storage tank above the collector outlet. Regarding the reverse thermosyphon-
ing prevention, a storage tank located above the collector outlet offers the possibility to
use a physical approach, while a low system setup needs an additional non return valve.
Due to its lower complexity, a close-coupled system setup is followed. As space for the
piping installation between collector and storage tank is needed, the prototype shows a
height difference of 80 mm (Figure 4.20).

![Figure 4.20: Storage Tank to Collector Height Ratio](image)

The system support design is based on the energetic optimal collector tilt angle. This an-
gle also influences the geometrical and aesthetical appearance of the prototype. Fig-
ure 4.21 shows the simulation results. In the range of 20–40 ° there are nearly no differ-
ences in the annual solar fraction. For the system support a tilt angle of 35 ° is chosen.
The variation of the inner pipe diameter for the interconnecting pipes leads to an optimum pipe diameter of 13 mm. Larger diameters on the one hand lower the flow resistance, but on the other hand they come along with a higher heat loss on the surface and a higher heat capacity (Figure 4.22) that makes the system slow in reaction.
Due to the manufacturing process, the prototype collector deflects from these measures. The return pipe and the lower header are one bended pipe with an inner diameter of 16.4 mm, which is included directly into the collector casing.

From the economic point of view a recommendation for 15–20 mm insulation thickness (Figure 4.23) can be derived from the simulation results. If 25 mm insulation thickness was chosen the amount of insulating material needed, already doubles compared to 15 mm.

![Figure 4.23: Influence of the Pipe Insulation Thickness](image)

4.3 Construction of the System-Prototype

To reduce material usage (costs) and to allow a quick and secure installation of the thermosyphon system a preassembled system support layout was developed and proposed to the project partner. The system support uses only prefabricated parts and incorporates the collector frame as structural system part. A new pivot design fixes the collector tilt angle securely to 35 °. To fix the support on site only 2 screws are necessary. A detailed description of the system support can be found in Appendix E.
The construction of the prototype was done in two steps. The first step was the construction of a collector and a storage tank at the project partners’ company according to the described design parameters. Both components were then tested intensively in the university laboratories as described in Chapter 5.1 to 5.3. The goal behind these tests was to determine further optimisation potential beforehand to the adaption of the system to mass production. The solar collector prototype for example has a removable transparent cover making it possible to equip the collector with various temperature sensors (Figure 4.24).

The storage tank was manufactured manually to the dimensions of the storage tank design. It is equipped with 16 threads for temperature sensors at its cover. The storage tank was not enamelled nor was a sacrificial anode included. To optimise the draw-off quality of the storage tank, a removable cold water diffuser is clipped in. The insulation is a low
expansion polyurethane foam. The insulation quality is not comparable to high density polyurethane foam, usually used as storage tank insulation material. The outer coating is a riveted sheet metal which will be replaced by an aluminium sheet in mass production (Figure 4.25).

![Figure 4.25: Storage Tank Prototype Tested in the Laboratory](image)

The interconnecting pipes and the system support are not part of this first prototype.

The second prototype was closer to mass production. It included a sealed improved solar thermal collector (Chapter 5.1) manufactured semi-automatically, the safety equipment, a system support as described in Chapter 4.2 and an enamelled storage tank with a fixed diffuser. The storage tank, a purchased part, included some compromises between technical optimisation potentials (Chapter 5.2) and costs.
5 Proof of Concept

The collector and storage tank of the prototype are tested in detail separately before performing a characterisation of the whole system in an outdoor test.

5.1 Collector Tests

To visualize the flow distribution inside the absorber, an infrared thermography testing rig is constructed according to Figure 5.1. The hydraulic setup is allowing an immediate switch from the cold fluid temperature close to the ambient temperature to the test temperature. The advantage of this setup is that there occurs no temperature mix inside the absorber. For the tests the absorber is taken out of the collector casing to avoid optical reflections at the glazing. To enhance the emissivity of the absorber, the absorber surface investigated is painted black. The test is carried out with the absorber in vertical position as the tilt angle in such a pumped pressurised system setup has no influence on the flow distribution. The flow distribution is only dependent on the fluid velocity and the hydraulic design of the absorber.

![Diagram](image)

Figure 5.1: Absorber Infrared Test Setup

Each test sequence starts by setting the test volume flow rate using the control valve (Figure 5.1). The transient absorber behaviour is recorded using the infrared camera. The tests are performed at flow rates typical of thermosyphon systems — 20 l h\(^{-1}\), 40 l h\(^{-1}\) and 60 l h\(^{-1}\) — see also Figure 3.22. Additional tests are carried out at high flow rates of...
120 l h-1 and 240 l h-1. The flow inside the absorber was expected to be well distributed even at low or laminar flow rates due to the header design according to Wagner (2008) where an optimum ratio of the converging to the diverting header cross-sectional area of 0.5–0.7 is recommended. The upper, converging header realised in the absorber has a diameter of 22x0.8 mm, while the lower, diverging header consists of a 18x0.8 mm pipe. This results in a ratio of 0.65 and lies within the recommended design range. During the tests, this homogeneous flow distribution could not be observed as shown in the infrared sequence for 60 l h-1.

Figure 5.2: Infrared Test Sequence at 60 l h-1
The inhomogeneous flow distribution of the prototype absorber measured at the university's testing rig could be verified by a CFD simulation done by the industrial partner to back up the infrared tests. At higher flow rates, the flow distribution measured became more and more homogenous. One of the optimisation possibilities is to add further riser tubes to lower the flow rate through each riser and homogenise the flow distribution even at low flow rates. Another approach is to use different riser diameters to control the flow distribution by the occurring pressure drop. But these approaches are limited by manufacturing restrictions, e.g. automatized welding of different pipe diameters on to one absorber sheet, on the one hand and the production costs on the other hand, e.g. by adding further riser pipes.

The pressure drop of the solar collector (field) influences thermosyphon systems and pumped systems in different ways. In thermosyphon systems the pressure drop affects the flow rate through the system. Therefore a high pressure drop in the solar collector comes along with a low flow rate and high temperature rise of the fluid while passing from collector in- to outlet, while a low pressure drop comes along with a lower temperature rise but a higher flow rate.

In forced circulated systems, the pressure drop affects two design variables. On the one hand a high pressure drop in the collector (field) comes along with a higher (parasitic) energy demand for the pump. On the other hand the experimental and analytical data published by Dunkle and Davey (1970) of a large parallel collector field composed out of 12 harp absorbers shows up a maldistribution of the flow rate (Figure 5.3 (A)), especially in the centre of the collector field. At a high overall flow rate, the authors measured a temperature difference of 22 K from the centre to the collector field outlet. A high temperature rise indicates a low flow rate inside the considered absorber. The authors worked out the recommendation for the connection of large collector fields, to connect the collectors either in a series-parallel (Figure 5.3 (B)) or a parallel-serial setup (Figure 5.3 (C)). Forced or natural circulated systems with up to 24 risers in parallel offer a satisfactory flow distribution.
This finding on natural circulation systems is in accordance to experimental investigations of a harp absorber in a thermosyphon system by Chuawittayawuth and Kumar (2002). The results show under partly cloudy, cloudy and clear sky with high radiation fluctuation the temperature distribution and thus the flow rate through the collector to be fairly uniform. Under clear sky conditions the first 2 risers (closest to the collector inlet) show significantly lower flow rates compared to the other 7 risers. An explanation for this behaviour is not given.

Besides a homogenous flow distribution, a high zero loss efficiency is needed for a good system performance. Furthermore, the collector efficiency curve is needed for the simulation validation. It was measured according to DIN EN 12975–2 (2006). The chosen measurement method is an indoor steady state procedure. The university’s indoor solar simulator offers the advantage of defined and reproducible test conditions as compared to outdoor tests. The experimental setup of the solar simulator used is illustrated in Figure 5.4.
The prototype collector was tested using 3 different volume flow rates. The first flow rate of 60 l h\(^{-1}\) was close to the maximum flow rate achievable during normal system operation. The second flow regime tested at 170 l h\(^{-1}\) corresponds to the given flow rate in the test standard of 72 l h\(^{-1}\) m\(^{-2}\) aperture area. The third flow rate was set to 280 l h\(^{-1}\). Resulting from the infrared tests, an improved flow distribution with a slightly better performance was expected. The measured efficiency curves were close to market available flat-plate collectors. However, the zero loss efficiency does not meet the design point of more than 0.80 (Table 5.1 and Figure 5.5). The parameters \(\eta_0\), \(a_1\) and \(a_2\) of the efficiency curve were estimated from test results using the least square fitting method given in the test standard. The curves in Figure 5.5 are plotted against \((T_{\text{mean}} - T_{\text{amb}})G^{-1}\) using equation (2.21).
Table 5.1: Coefficients for the Efficiency Curve Calculation Derived from Collector Testing

<table>
<thead>
<tr>
<th></th>
<th>Prototype Collector</th>
<th>Standard Flat-Plate Collector</th>
<th>Reference Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{V} [l h$^{-1}$]</td>
<td>60 170 280</td>
<td>140</td>
<td>135</td>
</tr>
<tr>
<td>η_0 [-]</td>
<td>0.787 0.773 0.773</td>
<td>0.776</td>
<td>0.811</td>
</tr>
<tr>
<td>a_2 [W m$^{-2}$ K$^{-2}$]</td>
<td>-0.013 -0.015 -0.016</td>
<td>-0.014</td>
<td>-0.019</td>
</tr>
</tbody>
</table>

Figure 5.5: Measured Collector Efficiency Curves

To improve the zero loss efficiency it is necessary to homogenise the flow distribution inside the absorber, as theoretical calculations with a uniform flow distribution reveal an efficiency of 0.80. Besides that the welding quality at the beginning and the end of each welding line has to be improved. Removing the absorber from the casing leads to a shear off between absorber plate and piping as illustrated in Figure 5.6.
Apart from the efficiency curve, the thermal behaviour of the solar collector was investigated in detail. For these measurements, the collector was equipped with 9 temperature sensors inside as shown in Figure 5.7. The tests were carried out at a flow rate of 60 l h\(^{-1}\) and with the collector in stagnation. Stagnation in this case meant, the collector fluid was removed and the empty solar collector was irradiated by the solar simulator.

The stagnation temperature of the collector was extrapolated according to measurement data to 202°C at 1,000 W m\(^{-2}\) and \(T_{\text{amb}} = 30\) °C applying the method given in the test standard. Stagnation temperatures in the range of 200–220 °C are typical of selectively coated flat-plate collectors.
Even more relevant to the efficiency of the thermosyphon system and the developing flow rate is the thermal separation of absorber and return pipe (cf. Appendix A), which is piped inside the collector casing just below the absorber sheet at a mean distance of 6 mm. This separation was proved by evaluating the temperature difference between absorber and return pipe at the collector bottom, in the centre and near the outlet. The tests were carried out at collector inlet temperatures ranging from 18–75 °C. As expected, the absorber temperature was always clearly above the pipe temperature. The chosen bandwidth of inlet temperatures corresponds to normal system operation temperatures. The difference in temperature was found to depend on sensor position and inlet temperature. The return pipe was not insulated — therefore a slight temperature rise from sensor \(T_{\text{return} 1} \) to \(T_{\text{return} 3} \) was noticed. The temperature difference from \(T_{\text{return} 1} \) to \(T_{\text{return} 2} \), was in the range of 0.5–1.5 K, depending on the inlet temperature. The significance of the measurement data was limited by two facts. The temperature sensors used for the calculation of the pipe temperatures are clamp on sensors. Hence, the exact fluid temperature was not measured. More important was that these sensors were also affected by the air temperature inside the casing, which was always above the entering fluid temperature. It was concluded that the temperature rise inside the return pipe in this case was overesti-
mated. A more precise measurement of the thermal behaviour could be done by inserting T-branches into the return pipe which would allow putting the temperature sensors directly into the flow. This idea could not be realised as the return pipe had to be cut and reassembled for this purpose and the collector was needed for the system tests.

The last test sequence carried out with the collector prototype was the measurement of the casing temperatures, an indicator for the collector edge losses U_e. According to Chapter 2.2.2 the edge losses for a well-designed system are considered to be rather small.

The aim of the test was to determine in which magnitude the unconventional absorber design — return pipe inside the casing and the asymmetric outer fin geometry — influenced the casing temperature during operation (Figure 5.8). Two temperature sensors were placed at the inside of the casing at 2/3 collector height. Convection and radiation from pipes and absorber plate were considered to be relevant for the occurring heat transfer towards the casing.

![Schematic View of the Measurement Points at the Collector Casing](image)

Figure 5.8: Schematic View of the Measurement Points at the Collector Casing

At normal operation conditions up to $T_{\text{inlet}} = 64 \, ^\circ\text{C}$ inlet temperature ($T_{\text{outlet}} = 81 \, ^\circ\text{C}$), the differences at both casing sides were less than 5 K.

At $T_{\text{inlet}} = 81 \, ^\circ\text{C}$ ($T_{\text{outlet}} = 98 \, ^\circ\text{C}$), the temperature on the right side $T_{\text{casing 1}}$ of the absorber was 10 K above the left side as shown in Figure 5.9. This indicates a higher heat flux towards the casing at fluid temperatures close to 100 °C and thus increasing edge losses.
5 Proof of Concept

The temperature dependent losses result in a reduction of the overall collector efficiency at high temperatures, not relevant for thermosyphon systems because such high temperatures may cause overheating problems.

There were identified two possible reasons for the measurement results. On the one hand there was the return pipe carrying hot fluid close to the casing and sensor T_{casing1}. On the other hand the width of the right fin is 83 mm while the left fin width is only 61 mm. This caused higher temperatures and thus losses at the right fin edge (T_{casing1}).

Due to the rather low temperature difference during normal operating temperatures no additional measures like insulating this pipe were considered to reduce the thermal losses and so the collector edge losses U_e.

A further fact that requires little temperature difference on both casing sides is the implemented physical approach to avoid reverse thermosyphoning, where the in- and outlet of the collector have to cool down equally to avoid thermal imbalances and so reverse flow.

![Figure 5.9: Measured Casing Temperatures at Mass Flow Rate 60 kg h$^{-1}$](image)

5.2 Storage Tank Tests

The storage tank is evaluated in two steps. The first tests are carried out to study the behaviour of the solar circuit with its special expansion vessel design. This vessel can cope
with a volume expansion of up to 3.5 l and is supposed to keep the system pressure below the safety valve opening pressure of 2.5 \(\text{bar}_{\text{abs}} \). The calculation of the volume expansion through temperature rise inside the thermosyphon system is done taking an uniform system temperature into account. This overestimates the real volume expansion as a temperature gradient of 20–40 K between collector outlet (storage tank inlet) and storage tank outlet (collector inlet) is a normal value during operation. The solar fluid volume of the system including storage tank, interconnecting pipes and solar collector is about 14 l.

The basis of the calculation is the Boyle-Mariotte formula and the density temperature correlation of the solar fluid used (equation (5.1)):

\[
p_{\text{air}, 2}(T) = \frac{p_{\text{air}, 0} V_{\text{air}, 0}}{V_{\text{air}, 0} - V_{\text{fluid}, 0} \left(\frac{\rho_{\text{fluid}, 0}}{\rho_{\text{fluid}}(T)} - 1 \right)} \tag{5.1}
\]

with

- \(p_{\text{air}} \) Pressure Inside the Vessel \([\text{Pa}]\)
- \(T \) Considered Fluid Temperature \([\text{°C}]\)
- \(V_{\text{air}} \) Air Volume Inside the Vessel \([\text{m}^3]\)
- \(\rho_{\text{fluid}} \) Solar Fluid Density \([\text{kg m}^{-3}]\)

The calculation and the functionality are proved in a laboratory test by pumping additional fluid into the expansion vessel. This additional fluid corresponds to the temperature dependent volume expansion of the heat transfer fluid. The measured volume pressure data is in good correlation with the extrapolated calculation data for values above 100 °C. During normal operation (temperatures below 100 °C) a pressure rise below 0.25 bar as illustrated in Figure 5.10 will occur. An optimisation measure derived from the test is the possibility to use a smaller expansion vessel in the system and allow a higher pressure rise during operation, as commonly available safety valves open at either 2.5 bar \((3.5 \text{ bar}_{\text{abs}}) \) or 5.5 bar \((6.5 \text{ bar}_{\text{abs}}) \).

The second test carried out within the heat exchanger circuit is a pressure drop measurement with special regard to the expansion vessel. This vessel is in the main fluid stream and causes an additional dynamic pressure drop, as the inflowing fluid enters a region with no velocity (cf. Chapter 3.3.3). Compared to the reference storage, the proto-
type shows a higher pressure drop in the relevant volume flow range of 0–65 l h⁻¹ (Figure 5.11).

Figure 5.10: Pressure Volume Expansion Characteristics of the Storage Tank

Figure 5.11: Pressure Drop of Prototype and Reference Storage Tank

From this background a detailed analysis of the expansion vessel design shows related optimisation possibilities resulting in a lower overall pressure drop. In prototype genera-
tion 2 the fluid will not be piped through the expansion vessel, but is only hydraulically
connected through a tee branch as can be seen in Figure 5.12.

![Figure 5.12: Expansion Vessel Integrated within the Storage Tank (Prototype Generation 2)](image)

The second measurement cycle within the storage tank tests is carried out to improve the
hot water draw-off quality in terms of available unmixed hot water. The test procedure is
analogous to the mixing tests described in ISO 9459–2 (1995). By using the double man-
tle heat exchanger, the water inside the storage tank is heated up to a uniform tempera-
ture of 65–67 °C. During the heating up period the hot water volume is mixed using a
pump. At the desired temperature, the heat supply is stopped and the draw-off is started.
The parameters for the draw-off are a constant cold water temperature ranging from
17–20 °C and a flow rate of 600±50 l h⁻¹. The (hot) heat exchanger remains filled during
the draw-off.
An ideal storage tank is able to deliver all its volume of hot water at a constant temperature before directly switching from hot water to cold water temperature. In a real storage tank mixing effects take place lowering the delivered amount of usable hot water. These mixing effects and therefore the hot water quality are strongly dependent on the water inlet design. A well-designed inlet stratifies the entering cold water at the storage tank bottom and additionally prevents the entering cold water from mixing with the hot water. During the tests, the storage tank is considered to be unmixed as long as the hot water temperature does not drop by more than 2 K. For the comparability of different storage tanks with different volumes, the draw-off is normalised in times the water volume as to be seen in Figure 5.13.

Figure 5.13: Differentiation of an Ideal and a Real Storage Tank

A benchmark of thermosyphon system storage tanks with a nominal volume in the range of 150–180 l tested at Ingolstadt University showed that especially low cost systems were only able to deliver 0.4–0.6 times their storage tank volume before the mixing zone starts. Well engineered systems were able to deliver more than 0.7 times the storage tank volume. The reference storage tank uses a die casted inlet diffuser which enhances the draw-off volume to 0.95.
A detailed investigation of the reasons for the reduced draw-off efficiency of some storage tank designs was carried out and will briefly be discussed.

In one of the storage tanks tested the cold water was distributed by a ½” inlet pipe without flow distributor. The small pipe diameter caused a high fluid velocity (and Reynolds number) at the draw-off rate of 600 l h⁻¹ and thus mixing of the cold inlet jet with the hot water inside the storage tank occurred (Table 5.1).

Table 5.1: Reynolds Number and Fluid Velocity of Water at 600 l h⁻¹ and 20 °C Water Temperature

<table>
<thead>
<tr>
<th>Inner Diameter (D)</th>
<th>Reynolds Number (Re)</th>
<th>Fluid Velocity (v) [m s⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>8,330</td>
<td>0.33</td>
</tr>
<tr>
<td>3/4"</td>
<td>11,110</td>
<td>0.59</td>
</tr>
<tr>
<td>1/2"</td>
<td>16,660</td>
<td>1.32</td>
</tr>
</tbody>
</table>

The rest of the storage tanks employed small and simple baffle plates which were not able to compete with the reference storage tank at the given flow rate of 600 l h⁻¹ (Figure 5.14). This measured performance is in good accordance to findings by Shah and Furbo (2003) where three different inlet designs — no baffle plate, a small hemispherical baffle plate and a big baffle plate — were compared.

Figure 5.14: Baffle Plates Used in the Storage Tanks

Some storage tanks have a high length to diameter ratio of more than L/D = 3.0, so the vertical thermocline is more likely to be destroyed during drawing hot water off compared to the lower L/D = 1.7 ratio applied in the prototype (Figure 5.15).
5 Proof of Concept

![Figure 5.15: Storage Tank Length to Diameter Ratio](image)

The distance between cold water inlet and hot water outlet in some cases is very close. This causes regions in the storage tank separated from the main flow (Figure 5.16).

![Figure 5.16: Distance Between In- and Outlet](image)

A further reason for a low normalized draw-off volume is the height of the hot water draw-off pipe or distributor. The higher it is located, the higher the usable hot water volume is.

The findings of the benchmark tests were applied to the prototype design in order to achieve a normalised draw-off volume of more than 0.9 by using a simple, low-cost diffuser shape consisting of market available prefabricated parts.

Four tests were carried out. The first test was done completely without a diffuser. Mixing inside the storage tank took place after 0.74 times the storage tank volume. This basically good performance can be explained by the outcomes of previous tests. The prototype storage tank has in- and outlet diameters of 1” located as close as possible to the storage tank head. The hot water draw-off lance implemented and piped through the storage tank ensures that the hot water was taken at the top of the annulus.
For the second test a diffuser with equally distributed boreholes at its side was used (Table 5.2). This diffuser improved the usable hot water amount to 0.91 times the storage tank volume. However the boreholes at the side distributed the cold water at 60 mm (12 %) height from the storage tank bottom.

In test three and four a slotted and a wedged diffuser with the opening at the bottom designed on the basis of Hegazy (2007, cf. Chapter 2.2.3) were used. Both diffuser types improved the hot water availability to 0.96 (cf. Table 5.2). The cold water was distributed at 10 mm (2 %) height.

Figure 5.17 presents the measurement data of the slotted diffuser. The area between cold water and hot water curve represents the energy draw-off during the test. This area was bigger than that of an ideal storage tank as the test was carried out with the double mantle filled with hot water. This water was an additional heat source for the tap water inside the storage tank, theoretically allowing the storage tank to perform better than an ideal storage.

![Figure 5.17: Draw-off Curve Using the Slotted Diffuser](image)

In terms of production the slotted diffuser offers one main advantage compared to the wedged and “borehole” diffuser, as the opening is produced in only one work step with a
5 Proof of Concept

single tool, and will be implemented in prototype generation 2. Table 5.2 summarises the diffuser tests.

Table 5.2: Tested Diffuser Shapes

<table>
<thead>
<tr>
<th>Diffuser Type</th>
<th>No Diffuser</th>
<th>Diffuser with Bore-holes</th>
<th>Slotted Diffuser</th>
<th>Wedged Diffuser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet Position</td>
<td>Vertical into the Tank</td>
<td>Outlet along the Side</td>
<td>Bottom Outlet</td>
<td>Bottom Outlet</td>
</tr>
<tr>
<td>Hot Water Ratio</td>
<td>0.74</td>
<td>0.91</td>
<td>0.96</td>
<td>0.96</td>
</tr>
</tbody>
</table>

The storage tank prototype was insulated with low expansion polyurethane foam. This foam did not offer the required insulation quality to determine realistic overnight losses of the storage tank and de-stratification effects as discussed in Chapter 2.2.3. Those tests have to be carried out with the prototype generation 2 which will be better insulated using high expansion polyurethane foam. The application of an enamel coating with low conductivity will also lower the effective vertical heat conductivity of the storage tank.
5.3 Experimental Optimisation of the Prototype

Within the thesis, the testing rig was enhanced with a process measuring and control technology device allowing fully automated test sequences. A simplified hydraulic scheme of the improved configuration can be seen in Figure 5.18.

![Hydraulic Scheme of the Testing Rig](image)

Figure 5.18: Hydraulic Scheme of the Testing Rig

The prototype thermosyphon system consisting of the collector and storage tank of prototype generation 1 was installed under a tilt angle of 35° in the testing rig to prove the interaction of the components (Figure 5.19).
The interconnecting pipes were temperature resistant hoses, but in the mass production system aluminium or stainless steel will be employed.

Two test days in conformity to ISO 9459–2 (1995) were collected and evaluated. A test sequence covers about 14.5 hours, including system preconditioning, heating up period, draw-off and data evaluation as illustrated in Figure 5.20. For a valid test day, the irradiation must not exceed a given range of 8–25 MJ m\(^2\).
Both test days were compared to similar test days recorded with the reference system. As a quality label, the ratio energy drawn-off Q compared to irradiance on the aperture area H^* was chosen. Both, reference system and prototype system worked in the same bandwidth of $Q/H^* = 50–60\%$ as shown in Table 5.3. Other systems tested in Ingolstadt range from 35–45%. This ratio was dependent on the ambient and the cold water temperature. In a full system test cycle consisting of at least 4 test days, this dependency is erased by a regression analysis. The results from the regression analysis are independent of the climatic conditions under which the system was tested, so the results are transferrable to any location worldwide. The system performance is represented by equation (2.3) introduced in Chapter 2.2.1.
Table 5.3: Useful Energy Gained by Reference and Prototype System

<table>
<thead>
<tr>
<th></th>
<th>H [MJ m⁻²]</th>
<th>H* [MJ]</th>
<th>Q [MJ]</th>
<th>Q/H* [-]</th>
<th>T_{ambient, av} [°C]</th>
<th>T_{cold water, av} [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference System (Aperture Area 1.87 m²)</td>
<td>23.0</td>
<td>43.0</td>
<td>22.1</td>
<td>51.4 %</td>
<td>17.1</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>24.9</td>
<td>46.6</td>
<td>28.4</td>
<td>60.9 %</td>
<td>21.5</td>
<td>20.2</td>
</tr>
<tr>
<td>Prototype System (Aperture Area 2.34 m²)</td>
<td>22.7</td>
<td>53.1</td>
<td>30.7</td>
<td>57.8 %</td>
<td>22.3</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td>24.3</td>
<td>56.9</td>
<td>32.5</td>
<td>57.1 %</td>
<td>18.9</td>
<td>20.2</td>
</tr>
</tbody>
</table>

In terms of hot water the prototype was able to deliver 150 l or 0.90 times of its volume hot water before the draw-off curve drops steeply (Figure 5.21). This value was in good accordance to the laboratory tests with a fully mixed storage tank resulting in 0.96 times the storage tank volume. However, the 2 K criterion applied in the laboratory tests was not applicable for the system tests as the storage tank had no uniform temperature due to stratification effects during the solar driven heating up period and the lack of mixing of the hot water beforehand to the draw-off.

Figure 5.21: Draw-off Curve of the Prototype System
6 Conclusions and Outlook

The objective of the work described in this thesis was to develop an optimised thermosyphon solar hot water heater based on a detailed evaluation of the shortcomings of commercially-available thermosyphon systems. A realistic simulation model was developed, validated and used in a sensitivity analysis of the influences of major design variables. Input data of the simulation model focused on geometrical data and the material properties of the system and system parts. This allowed a direct link between the system design and the material selection on the system’s annual efficiency. A further goal behind the sensitivity analysis was to show the dependency of the system layout on the geographic location investigated. The outcomes of the simulation and a literature review were transferred into a thermosyphon system prototype design. The prototype was constructed and subjected to laboratory testing. The outcomes of the research are discussed in more detail below.

6.1 System Layout

Various different system layouts — direct flow evacuated tube thermosyphon systems, evacuated tube heat pipe thermosyphon systems, direct flow flat-plate collector systems and two circuit flat-plate collector systems — were reviewed and discussed in this thesis. In terms of durability, freeze resistance and payback time, systems using flat-plate collectors, double mantle heat exchanger storage tanks and a liquid heat carrier fluid were found to offer the most promising basis for the research.

To ensure a high hot water availability in times of adverse weather a solar preheat system setup with an external continuous flow heater was pursued. A heating element inside the storage tank was found to lower the annual solar fraction.

The night-time performance of thermosyphon systems was found to be dominated by heat losses to the surroundings, by reverse thermosyphoning and by a loss of the thermocline inside the storage tank caused by the conductivity of the tank’s wall material. To avoid reverse thermosyphoning two different approaches were considered. The first approach, which was not followed up, was to include non-return valves into the collector circuit. The reason for this decision is based on the unknown long-term stability of this
measure. The other way was to adjust the tank and the collector inlet/outlet co-locations, which avoids a thermal imbalance inside the thermosyphon system during the cooling down phase. Thus, the system is prevented from reverse flow and the related additional heat losses.

The available amount of hot water was found to be dominated by mixing of the hot water with the incoming cold supply from mains. Several different approaches to avoid mixing and to position cold water inlet and hot water outlet were found in literature. The idea of a cold water diffuser and a water draw-off lance were examined as this solution offered a good performance combined with simplicity in design.

Different collector absorber designs — harp, meander and volumetric absorbers — for thermosyphon systems were discussed in brief. Compared to copper, aluminium alloys can effect a noticeable cost reduction potential in the range of 60 %. Aluminium was used for collector hydraulics of pumped systems in the past, but disappeared from the market as corrosion problems — inside the fluid channels and at the selective coating — arose. Aluminium alloys however have been investigated further and long term stable selective coatings have been developed by research institutes and industry. Nowadays, aluminium alloys out of the [3xxx] family are available for solar thermal piping. The use of a mix-installation of copper, zinc and aluminium was found to be critical for the expected durability. However, thermosyphon systems are normally sold as full packages; this allowed a matching material selection to be proposed in this thesis — aluminium in combination with mild steel and stainless steel and the use of a solar fluid containing aluminium corrosion inhibitors.

6.2 System Simulation

Based on a reference system tested in Ingolstadt, a simulation model was built up and validated in this thesis. The simulation environment chosen was MATLAB /SIMULINK and the extension CARNOT. CARNOT is a block-based simulation open source library focused on building energy systems. Within the model development, CARNOT was extended by a new one-dimensional double mantle heat exchanger storage tank model. One-dimensional models were found to offer sufficient simulation results for long term performance predictions. The double mantle model is a further development of the
TRNSYS double mantle heat exchanger storage tank model developed by Andrés and Lopéz (2002) and the simple hot water storage tank model included in CARNOT (Hafner et al., 1999). Such models use computational constructs to describe the loss of stratification inside the storage tank. For this model, the de-stratification was calculated by a mixing of the layers according to Klein et al. (1999). The model developed also allows varying the heat exchanger surface by setting the heat exchanger length as an exogenous input.

The model input data for the storage tank are geometrical data and material properties directly linking the system performance with the storage tank design. The storage tank model was validated using measurement data from the reference system tested at the university's testing rigs.

The storage tank model was intended to describe a solar pre-heat system with the heat exchanger inlet at the top of the heat exchanger and the heat exchanger outlet at the bottom of the storage tank, as found in the literature review. Therefore, a variation of the inlet height was not considered.

The collector model used in the simulation was a one-dimensional model based on a measured efficiency curve according to DIN EN 12975-2 (2006). Two-dimensional models were found to offer additional benefits for the design of solar collectors, as material properties and design parameters can be directly incorporated and evaluated. However, two-dimensional models require more knowledge about the physical processes inside the collector and additional computational power. For annual predictions, the accuracy of one-dimensional models was considered to be sufficient.

The wind speed and wind-dependent heat loss rates were chosen to be constant throughout day and year to allow a good comparability between the different locations simulated. Thus, additional convective heat losses lowering the annual solar fraction caused by windy and stormy weather were not modelled. Additionally, the wind-dependent heat losses differ at each location investigated and are also influenced by the installation site of the thermosyphon system, such as the front of a house or on a roof top.
The linear and quadratic collector pressure drop coefficients were treated as physically independent from one another. These parameters are normally obtained from laboratory tests by polynomial fitting of measurement data. Thus, the coefficients are related to the specific hydraulic design of the collector. The model, however, is able to accommodate any pressure drop curves.

Boiling of the heat transfer medium was not considered, as the system was simulated to work at a constant collector circuit pressure of 2 bar. This allowed temperatures of up to 120 °C in the collector circuit filled with water without boiling. The system pressure in a closed thermosyphon system differs throughout the day related to the temperature dependent fluid density but this effect was not accounted for in the simulation.

The system simulation was used to carry out a sensitivity analysis to find out the most significant design-driving factors, using a standard draw-off profile. This draw-off profile did not take holidays or days without hot water demand into account. For such days, technical measures like overheating protection valves, which keep the hot water temperature below 95 °C, have to be incorporated into the storage tank prototype.

Eighteen geometrical and physical parameters were investigated in a defined bandwidth under the climatic conditions of three different European locations — Ingolstadt, Rome and Malaga. Effective system design, however, was found to be nearly independent from the location. The dimensions of the system proposed differ from the state-of-the-art which has a 180 l storage tank and a 2 m² solar collector. The prototype collector area was enlarged to nearly 2.5 m², while the storage tank volume was scaled down to 165 l of hot water. The system was close-coupled with a collector tilt angle of 35 °. The thermosyphon system faced directly south. In combination with a thermostatic mixing valve, this combination increased the solar fraction from 70 % to 85 % for Malaga. This increased solar fraction lowers the auxiliary energy to cover 100 % of the annual hot water demand by about 400 kWh a⁻¹ and therefore offers a useful contribution to the reduction of greenhouse gases.

The continuous flow heater was assumed to have an efficiency of \(\eta = 100 \% \) — its transient behaviour was not taken into account. Inclusion of the dynamic working characteristics of real continuous flow-heaters will increase the auxiliary energy demand — depend-
ing on the type of heater used — for the hot water preparation and thus lower the achievable annual solar fraction. According to Recknagel et al. (2007), an electrical continuous flow heater has an efficiency of nearly 99%, however requires a high power input. Simple gas-fired continuous flow heaters have a low efficiency of 16–49%, although gas fired continuous flow heaters with electronic ignition have an efficiency of 84%.

6.3 Thermosyphon System Prototype

Based on the outcomes of the literature review and the system simulation, a thermosyphon system prototype was designed and constructed. The absorber was entirely made out of aluminium, as aluminium offered essential advantages compared to copper or copper/aluminium to be used in a two-circuit thermosyphon system. In the past, the use of full aluminium absorbers was not possible as the systems were mainly single circuit systems. This thesis reopens the path towards 100% aluminium absorbers in two-circuit thermosyphon systems.

Operating temperatures up to 80 °C are sufficient for thermosyphon systems, so the panel back insulation could be reduced to 30 mm. The resulting reduction of collector size and the material selection of aluminium produced a weight advantage of 25% compared to a typical copper solar collector, hence easier collector handling during installation will be possible.

The collector return pipe was integrated into the collector casing at an average distance of 6 mm from the absorber sheet. This separation was necessary to avoid re-heating of the collector fluid before entering the diverting lower collector header. The thermal separation of pipe and absorber was validated in a collector test using the university’s solar simulator. At typical operation temperatures, the heat losses from the return pipe to the collector casing were found to be small, hence no additional measures like insulating the return pipe were taken into consideration. For practical reasons, the inner diameter of the return pipe was at 16.4 mm, while 13 mm was indicated by the simulation.

In simulation and from experimental measurements, the absorber coating was found to require high absorption values of more than $\alpha = 95\%$ combined with a medium emission coefficient, such as black chrome, to achieve a high annual solar fraction in combination
with a reduced danger of overheating problems. For technical reasons, the prototype collector was produced with a highly selective coating.

The measured efficiency of the prototype collector was found to be comparable to that of modern flat-plate collectors. There was still potential towards a higher zero loss efficiency, as the welding quality of absorber and collector hydraulics at the welding line ends was poor. The collector efficiency curve derived from the collector tests was used as an input for the one-dimensional solar collector simulation model.

In an infrared test sequence, the flow distribution of the fluid when being pumped through the absorber was found to be inhomogeneous. During operation in a thermosyphon system, the flow is developed by buoyancy forces and thus an even flow distribution is more likely to develop (Chuawittayawuth and Kumar, 2002).

The overall performance of the prototype collector with its 12 riser pipes, however, showed a good potential for the use in a thermosyphon system.

The storage tank developed was of a double mantle configuration. Following on from the results of simulation, a collector to storage tank ratio of 65 l per square metre collector area was used. The storage tank was designed as a solar pre-heat thermosyphon system. The entrance of the collector fluid into the double mantle was located at the top of the annulus whereas the outlet was located at the storage tank bottom. An internal expansion vessel was included into the storage tank, to ensure a limited pressure rise during operation in the collector circuit. The use of an external expansion vessel was not followed up, as this solution implies additional installation effort and might be a source of errors occurring during installation by typically unskilled labour.

The working principle of the expansion vessel integrated within the hot water region of the storage tank was experimentally proved to keep the system pressure below the opening pressure of the safety valve required for the thermosyphon system in the university’s laboratory.

An analysis of the storage tank pressure drop revealed a higher pressure drop in the first prototype compared to that in the reference component. A closer look at the hydraulic design of the first prototype showed an improvement due to the hydraulic connection of
the expansion vessel, which have been taken into account for the design of the second prototype.

The main focus in the area of available hot water was to maintain thermal stratification during draw-off. For this reason, several cold water diffuser shapes were tested in combination with a hot water draw-off lance. A simple slotted diffuser made out of prefabricated parts was able to increase the unmixed volume to 0.96 of the tank volume, compared to a value of 0.74 without a diffuser. The performance of the prototype compared favourably to that of the reference storage tank. The reference system, however, used an expensive die casted diffuser shape. The work on the diffuser shape showed good potential for simple but effective geometries based on prefabricated parts, like standard pipes, which can easily be implemented into the storage tank.

From the tests performed with the prototype and further storage tank testing within this programme of research and the literature review, the following design guideline can be stated. The distance between the inlet and outlet should be maximised, while the length to diameter ratio should be kept below 2. The connecting pipes should have a diameter of 25 mm, combined with a hot water draw-off lance and a cold water diffuser having its opening as close as possible to the storage tank bottom.

The prototype storage tank was manually insulated using low density polyurethane foam which did not match the insulation quality of rigid high density polyurethane foam. Therefore tests on the nocturnal heat losses were not performed with the first storage tank prototype.

The inner mantle and the heat exchanger mantle were made out of mild steel for several reasons. Compared to copper or stainless steel, this material offers a sufficient strength at lower material costs. Regarding the degradation of the thermocline by heat conduction in the mantle material, mild steel outperforms copper by factor 8. Standard polymers with a low heat conductivity would perform better, but require large wall thicknesses up to 11 mm to work in a pressurised storage tank. Such a wall thickness, however, would work as an insulation against the heat flux from the double mantle heat exchanger, hence lower the overall system efficiency.
For aesthetic reasons and to achieve a low length to diameter ratio, the overall width of the storage tank was limited to the collector width and all connections were placed concealed from view at the storage tank bottom.

In autumn 2011, the interaction of storage tank and solar collector was successfully tested by carrying out single measurement days according to ISO 9459–2 (1995). The performance found exceeded that of many standard systems available on the market and compared favourably with that of the reference system. A full test cycle according to the given test standard would, however, be necessary to be able to eliminate the influence of cold water and ambient temperature on the system performance.

By applying further component improvements as described above, a practical system will be able to significantly outperform the reference system. However, before these improvements could be put into production some further tasks have to be done.

The storage tank and collector would have to be tested and evaluated according to the first test pre-series (first prototype) to show if the improvement measures which have been found during the laboratory tests can practically achieve the expected additional efficiency. Optional components like a combination of continuous flow heater and thermostatic mixing valve would have to be selected beforehand to the certification of the system at an accredited institute.

A system simulation model providing solar fraction forecasts at user-defined locations would need to be prepared. The simulation model would have to be reduced to a minimum of required input parameters, which will allow using the model for simple performance estimations by the manufacturers.

6.4 Recommendations for Further Investigations

The closed development cycle described in this thesis — analysis of thermosyphon systems in theory, transferring the mathematical model into simulation, validation of the simulation, design and construction of a prototype based on simulation results and the testing and improvement of the prototype — was demonstrated.

The developed and validated double mantle heat exchanger storage tank model as well as the thermosyphon system model provides researchers in the field of solar-thermal ap-
lications as well as manufacturers with the opportunity to easily adapt their thermosyphon systems to differing climatic conditions and customers’ demands.

In order to optimise the accuracy and the significance of the system simulation, the following tasks are proposed to be investigated.

The introduction of a physical two-dimensional collector model would allow the simulation of solar collectors in thermosyphon systems to be based more on physical correlations, rather than measured efficiency curves. A comparison of the one- and two-dimensional collector models in terms of transient behaviour, annual system performance and computational effort would be a worthwhile task.

The collector pressure drop calculation, based on the hydraulic design and not measured pressure drop coefficients, should be implemented within the collector model. This allows a direct link between collector hydraulics and achievable solar fraction without the necessity of performing pressure drop tests beforehand to the simulation.

The influence of different cold water entrance models, like the plume entrainment approach (Kleinbach et al., 1993) into the one-dimensional storage tank model and their influence on the annual solar fraction could be investigated. Additionally the behaviour of the enhanced one-dimensional models could be compared to the result of a CFD simulation based on the same storage tank geometry to be able to balance additional accuracy with computational effort.

The storage tank model should be enhanced by a heat exchanger inlet height set by the user, in order to be able to determine the dependency of the system efficiency on the heat exchanger configuration.

Different water draw-off profiles and their influence on the annual solar fraction should also be analysed. The danger of overheating in times of zero hot water demand should be simulated to provide the basis for the selection of safety equipment for the thermosyphon system.
6 Conclusions and Outlook

In order to provide more information on the prototype system performance, the following tasks are proposed.

The prototype collector suffered from a shear off between absorber plate and piping at the welding line ends, the collector efficiency curve should be re-tested on the solar simulator after optimising the welding quality, to ascertain the welding’s influence on heat transfer and to gain data for more detailed simulation studies.

To quantify the measured thermal resistance between absorber plate and return pipe, the collector test should be carried out a second time with temperature sensors inside the flow and in the space between absorber plate and return pipe.

The flow distribution inside the absorber should be measured when the flow is driven by buoyancy. To illustrate the flow pattern, temperature sensors should be applied to the collector riser pipes and the system flow rate logged. The use of an infrared camera is not directly applicable, as the collector is glass-covered. The data collected should be compared to a CFD simulation on the collector’s buoyancy driven flow distribution.

The heat losses of storage tank prototype generation 2 should be measured and evaluated. For this test, additional temperature sensors should be placed inside the storage tank to estimate the de-stratification effects caused by the storage tank wall conductivity. The prototype tests should be completed by a full system test according to ISO 9459–2 (1995).

As a basis for the development of overheating protection measures, such as temperature-driven valves inside the collector circuit, stagnation tests would have to be performed with the prototype system. The aim of such stagnation tests is to quantify the incidence of storage tank temperatures of more than 95 °C.

The long-term performance analysis of the developed thermosyphon system at different locations under real operating conditions is a further task that should be carried out. Data collected during these tests should be used as a basis for further simulation studies. The long-term performance tests should include an analysis of the corrosion resistance of the aluminium piping, which could be done by chemical analysis of the heat transfer fluid at regular intervals.
References

References

References

HYDRO (N.N. 2012) We make solar shine with aluminium! [Brochure], Hydro Aluminium Precision Tubing Tonder, d.d., Tonder (DK).

References

References

Appendix A:
Influence of the Return Pipe on the Flow Rate
The influence of a return pipe directly welded to the absorber fins of a flat-plate collector on the mass flow rate is evaluated and compared to a collector without connection of down comer pipe and absorber. For the quantification of the influence some assumptions are taken into account:

1. Collector size 1x2 m² with 10 absorber fins
2. Heat carrier fluid: water
3. Heat converted:
 a. Case 1: Absorber fins and return pipe separated (return pipe internal or external)
 b. Case 2: Absorber fin and return pipe welded
4. Heat capacity constant (at inlet temperature)
5. Pressure drop of the system according to measurement data from a double mantle storage tank and a solar collector at 20 °C
6. Collector and storage tank close-coupled – interconnecting pipes neglected
7. Case 2: welded down comer pipe with absorber fin = 1/10*collector area
8. Collector tilt angle $\gamma = 45 ^\circ$

The system works at equilibrium of pressure gain and pressure losses at a particular mass flow rate (equation (3.4)), which is to be calculated. The mass flow dependent pressure drop is calculated according to equation (3.15), the constant pressure drop coefficient is set to $p_{loss,con} = 0$.

Pressure drop coefficients are taken from measurements of a flat-plate collector and a storage tank (Table A.1).

<table>
<thead>
<tr>
<th></th>
<th>$p_{loss,qua}$ [Pa s² kg⁻¹]</th>
<th>$p_{loss,lin}$ [Pa s kg⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector</td>
<td>45,360</td>
<td>2,778</td>
</tr>
<tr>
<td>Storage Tank</td>
<td>19,440</td>
<td>941</td>
</tr>
<tr>
<td>Total</td>
<td>64,800</td>
<td>3719</td>
</tr>
</tbody>
</table>

Another possibility was to calculate the pressure drop of collector and storage tank according to Chapter 2.2.2 and 3.3.3.
Figure A.1: Collector Layouts Considered

The converted energy Q_{dot} and the collector inlet temperature T_{in} is varied to show the dependency of the mass flow rate.

Case 1:

$$\Delta p_{\text{loss}} = \left(\rho(T_{\text{in}}) - \rho(T_{\text{out}}) \right) g H \sin(\gamma)$$ \hspace{1cm} (A.1)

$$\dot{Q} = \dot{m} c (T_{\text{out}} - T_{\text{in}})$$ \hspace{1cm} (A.2)

$$\rho(T_{\text{out}}) = f \left(\frac{\dot{Q}}{\dot{m} c} + T_{\text{in}} \right)$$ \hspace{1cm} (A.3)

$$\Delta p_{\text{loss}} = \dot{m}^2 p_{\text{loss,quad}} + \dot{m} p_{\text{loss,lin}}$$ \hspace{1cm} (A.4)

The density function of water is calculated according to the fourth power polynomial given in Chapter 3.1.1, equation (3.2).

$$\Delta p_{\text{bao}} = \Delta p_{\text{loss}}$$ \hspace{1cm} (A.5)
By combining equations (A.1) – (A.5) the dependencies can be written as shown in equation (A.6).

\[
\rho(T_{\text{in}}) - \left[a_0 + a_1 \left(\frac{\dot{Q}}{mc} + T_{\text{in}} \right) + a_2 \left(\frac{\dot{Q}}{mc} + T_{\text{in}} \right)^2 + a_3 \left(\frac{\dot{Q}}{mc} + T_{\text{in}} \right)^3 + a_4 \left(\frac{\dot{Q}}{mc} + T_{\text{in}} \right)^4 \right] gH \sin(\gamma) = \dot{m}^2 p_{\text{loss,qua}} + \dot{m} p_{\text{loss,lin}}
\]

(A.6)

Equation (A.6) is solved using a MATLAB script. For the mass flow four solutions are existent: 2 real solutions —1 positive and 1 negative— and 2 complex solution. The real positive solution represents the mass flow (Table A.2).

\(Q_\text{dot} \text{ [W]}\)	\(m_\text{dot} \text{ [kg h}^{-1}\text{]} \) at \(T_{\text{in}} \text{ [°C]}\)				
\(800\)	45.8	51.6	56.2	59.7	62.7
\(1,000\)	51.4	57.6	62.4	66.3	69.4
\(1,200\)	56.4	62.9	68.0	72.1	75.5
\(1,400\)	61.0	67.8	73.2	77.4	80.9

Case 2:

In case 2 the down comer pipe is welded with the absorber. The fluid coming down from the storage tank is already reheated by passing the return pipe. This causes buoyant forces in contradictory direction to the main flow. Therefore a buoyant term (equation (A.7) has to be added to equation (A.4) resulting in equation (A.8).

\[
\Delta p_{\text{bao,\text{e}}} = (\rho(T_{\text{in}}) - \rho(T'_{\text{in}})) gH \sin(\gamma)
\]

(A.7)

\[
\Delta p_{\text{loss}} = \dot{m}^2 p_{\text{loss,qua}} + \dot{m} p_{\text{loss,lin}} + \Delta p_{\text{bao,\text{e}}}
\]

(A.8)

The outlet temperature of fin 1 \(T'_{\text{in}}\) is the inlet temperature of absorber fins 2–10. It is calculated using the correlations (A.9) and (A.10).

\[
\dot{Q}_{\text{fin1}} = mc(T'_{\text{in}} - T_{\text{in}})
\]

(A.9)
\[\dot{Q}_{\text{fin}1} = \frac{\dot{Q}}{n_{\text{fin}}} \]

(A.10)

The density at \(T'_{\text{in}} \) is represented by equation (A.11)

\[
\rho(T'_{\text{in}}) = \left[a_0 + a_1 \left(\frac{\dot{Q}_{\text{fin}1}}{mc} + T_{\text{in}} \right) + a_2 \left(\frac{\dot{Q}_{\text{fin}1}}{mc} + T_{\text{in}} \right)^2 + a_3 \left(\frac{\dot{Q}_{\text{fin}1}}{mc} + T_{\text{in}} \right)^3 + a_4 \left(\frac{\dot{Q}_{\text{fin}1}}{mc} + T_{\text{in}} \right)^4 \right]^{-1}
\]

(A.11)

The system is driven by the buoyant forces occurring from fins 2–10 (equation (A.12)).

\[
\Delta p_{\text{bou,} \gamma} = (\rho(T'_{\text{in}}) - \rho(T'_{\text{out}}))gH \sin(\gamma)
\]

(A.12)

The energy available at these riser tubes is shown by equation (A.13) and (A.14).

\[\dot{Q}_{\text{fin2-10}} = \frac{\dot{Q}(n_{\text{fin}} - 1)}{n_{\text{fin}}} \]

(A.13)

\[\dot{Q}_{\text{fin2-10}} = mc(T_{\text{out}} - T'_{\text{in}}) \]

(A.14)

The density of the outlet temperature can be written as function of the available energy \(Q_{\text{dot}} \) and the inlet temperature \(T_{\text{in}} \) (equation (A.15)).

\[
\rho(T_{\text{out}}) = \left[a_0 + a_1 \left(\frac{\dot{Q}_{\text{fin}1} + \dot{Q}_{\text{fin2-10}}}{mc} + T_{\text{in}} \right) + a_2 \left(\frac{\dot{Q}_{\text{fin}1} + \dot{Q}_{\text{fin2-10}}}{mc} + T_{\text{in}} \right)^2 + a_3 \left(\frac{\dot{Q}_{\text{fin}1} + \dot{Q}_{\text{fin2-10}}}{mc} + T_{\text{in}} \right)^3 + a_4 \left(\frac{\dot{Q}_{\text{fin}1} + \dot{Q}_{\text{fin2-10}}}{mc} + T_{\text{in}} \right)^4 \right]^{-1}
\]

(A.15)

\[\dot{Q}_{\text{fin2-10}} = mc(T_{\text{out}} - T'_{\text{in}}) \]

(A.16)

The whole thermosyphon system finally is described by equation (A.17)

\[
0 = (\rho(T'_{\text{in}}) + \rho(T_{\text{out}}) - 2\rho(T'_{\text{out}}))gH \sin(\gamma) + m^2 p_{\text{loss,qua}} + \dot{m} p_{\text{loss,fin}}
\]

(A.17)

\[
\rho(T'_{\text{in}}) = \left[a_0 + a_1 \left(\frac{\dot{Q}_{\text{fin}1}}{mc} + T_{\text{in}} \right) + a_2 \left(\frac{\dot{Q}_{\text{fin}1}}{mc} + T_{\text{in}} \right)^2 + a_3 \left(\frac{\dot{Q}_{\text{fin}1}}{mc} + T_{\text{in}} \right)^3 + a_4 \left(\frac{\dot{Q}_{\text{fin}1}}{mc} + T_{\text{in}} \right)^4 \right]^{-1}
\]

(A.18)
Equation (A.17) is solved by a MATLAB script. The results are shown in Table A.3.

Table A.3: Mass Flow Rates Calculated for Case 2

<table>
<thead>
<tr>
<th>Qdot [W]</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>42.9</td>
<td>47.7</td>
<td>51.5</td>
<td>54.6</td>
<td>57.1</td>
</tr>
<tr>
<td>1,000</td>
<td>48.2</td>
<td>53.3</td>
<td>57.4</td>
<td>60.7</td>
<td>63.4</td>
</tr>
<tr>
<td>1,200</td>
<td>53.0</td>
<td>58.4</td>
<td>62.7</td>
<td>66.1</td>
<td>69.0</td>
</tr>
<tr>
<td>1,400</td>
<td>57.5</td>
<td>63.1</td>
<td>67.5</td>
<td>71.1</td>
<td>74.1</td>
</tr>
</tbody>
</table>

The mass flow of case 2 is always below case 1 and varies in the range of 5.8–8.8 per cent (Table A.4). The higher the inlet temperature is, the higher the difference between both flow rates becomes.

Table A.4: Difference in the Mass Flow Rate of Case 1 and Case 2

<table>
<thead>
<tr>
<th>Qdot [W]</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>6.4</td>
<td>7.6</td>
<td>8.2</td>
<td>8.6</td>
<td>8.8</td>
</tr>
<tr>
<td>1,000</td>
<td>6.1</td>
<td>7.4</td>
<td>8.0</td>
<td>8.4</td>
<td>8.6</td>
</tr>
<tr>
<td>1,200</td>
<td>5.9</td>
<td>7.2</td>
<td>7.9</td>
<td>8.3</td>
<td>8.5</td>
</tr>
<tr>
<td>1,400</td>
<td>5.8</td>
<td>7.1</td>
<td>7.8</td>
<td>8.2</td>
<td>8.4</td>
</tr>
</tbody>
</table>
Appendix B:

Storage Tank C-Code
* multiport stratified thermal storage with double jacket heat exchanger

*Version Changes Date
* 0.1.0 created feb2008

* Model description:
 The storage is modelled as a lying cylinder. The inner cylinder,
 is surrounded by another cylinder, the mantle. Between mantle and
 storage wall collector-fluid is flowing. The whole system is surrounded by an
 isolating material.
 Water inlet is at bottom and outlet at top. Collector fluid inlet is at top and outlet at bottom.

* Implementation:
 As a base for this code the Simulink templates for s-functions and the c-files
 "store.c" and "store_hx_r13.c" of the carnot library are applied.
 Result is a level 2 - function with 3 Input-ports and 2 output-ports.

 Input:
 port 1: ambient temperature
 port 2: 10 needed values of the THV Input vector of the collector-fluid
 port 3: 10 needed values of the THV Input vector of the water

 Output:
 port 1: node temperatures of collector-fluid from bottom to top and pressure
 port 2: node temperatures of water from bottom to top and pressure

* Calculations:
 * pressure drop: calculation dp = dp0 + dp1*mdot + dp2*mdot^2
 1) hydrostatic pressure between inlet and outlet:
 dp0 = rho * Grav * (n^dh)
 2) pressure drop at the inflow:
 dp2 = zeta * 0.5 * rho * v^2
 pressure drop at outlet is 0, because v in the storage is approximately 0

 differential equations for every nodes' energy balance:
 Generally there are influences of heat conduction, heat loss, and changes conditional on mass flow
 rho * Vnode * c * dT/dt = Alpha * Aloss *(Tambient - Tnode) (heat loss term)
 + lambda*A/d*(TnodeAbove - Tnode) (heat conduction from top to bottom)
 + mdot*c*(TnodeAbove - Tnode) (mass flow term)

 --> this equation is adapted to water and fluid terms

 with:
 rho = density
 Vnode = volume of the actual node
 c = heat capacity
 T = temperature
 t = time
 Alpha = heat loss coefficient
 Aloss = surface where heat loss happens
 lambda = heat conductivity
 lambdaS = heat conductivity which considers thermal resistance of convection in the tank (use lower value)
 A = area of heat conductivity
 d = length, where heat conduction happens
 mdot = mass flow
 zeta = coefficient for resistance

* INPUT-VECTOR: See at #define section

* STATES-VECTOR:
 includes all node temperatures of water and collector fluid, so its dimension is 2*node:
 Tbottom
 T1
 .
 .
 T2
 .
 .
 Ttop

*
Appendix B

* OUTPUT VECTOR:
 • includes number of measurement points temperatures of water and collector fluid, both pressures at outlet and
 2 * 3 coefficients of pressure drop term:
 • TbottomWater
 • T1Water
 • TtopWater
 pressure water at outlet
 constant |
 linear | > coefficients
 quadratic |
 y = TbottomColl
 T1Coll
 .
 .
 TtopColl
 pressure collector fluid at outlet
 constant |
 linear | > coefficients
 quadratic |

--

* CREATED FOR "CENTRE OF EXCELLENCE FOR RENEWABLE ENERGY RESEARCH AT INGOLSTADT UNIVERSITY OF APPLIED SCIENCES"
--

* Date Author Change
 21.04.2008 Martin Konrad Negative mass flow (signed by THV[11] = 1), are considered. If it is negative, collector fluid will flow into bottom node and leave the storage at the top node
 07.06.2008 Martin Konrad new way of calculating geometries of inner tank; selectable by a checkbox at input mask -->
on: nodes have same volume; off: nodes have same height
Numerical calculation of some geometrical values by bisection of interval (no analytical solution)

#define S_FUNCTION_NAME HorStore
#define S_FUNCTION_LEVEL 2

#include "tmwtypes.h"
#include "simstruc.h"
#include "carlib.h"
#include <math.h>

//define constants
#define PI 3.14159265358979
#define GRAV 9.81
#define NUSSELT_MANTLE 7.5
#define ALPHA_START 45.0
#define MAX_DIFF 0.000001
#define SAMEVOLUMES *mxGetPr(ssGetSFcnParam(S,0)) //True for geometric calculations with equal volumes
#define MANTLE_D_OUT *mxGetPr(ssGetSFcnParam(S,1)) /* outer diameter of the mantle [m] */
define MANTLE_D_IN *mxGetPr(ssGetSFcnParam(S,2)) /* inner diameter of the mantle [m] */
define MANTLE_FEED_PIPE_D *mxGetPr(ssGetSFcnParam(S,3)) /* diameter of the mantle-feed-pipe [m] */
define ZETA_ADDITIONAL_MANTLE *mxGetPr(ssGetSFcnParam(S,4)) /* additional value for zeta (mantle inflow)[-] */
define STORE_D_OUT *mxGetPr(ssGetSFcnParam(S,5)) /* outer diameter of the store [m] */
define STORE_D_IN *mxGetPr(ssGetSFcnParam(S,6)) /* inner diameter of the store [m] */
define STORE_FEED_PIPE_D *mxGetPr(ssGetSFcnParam(S,7)) /* diameter of the store-feed-pipe [m] */
define ZETA_ADDITIONAL_STORE *mxGetPr(ssGetSFcnParam(S,8)) /* additional value for zeta (store inflow)[-] */
define ISOLATION_D *mxGetPr(ssGetSFcnParam(S,9)) /* diameter of the isolation [m] */
define ALPHA_AMB *mxGetPr(ssGetSFcnParam(S,10)) /* heat loss coefficient mantle - air [W/(m²*K)] */
define LAMBDA_MANTLE *mxGetPr(ssGetSFcnParam(S,11)) /* heat conductivity in the mantle [W/(m*K)] */
define LAMBDA_STORE *mxGetPr(ssGetSFcnParam(S,12)) /* heat conductivity in the store [W/(m*K)] */
define LAMBDA_ISOLATION *mxGetPr(ssGetSFcnParam(S,13)) /* heat conductivity isolation [W/(m*K)] */
define TINI *mxGetPr(ssGetSFcnParam(S,14)) /* initial storage temperature [°C] */
#define NODES "mxGetPr(ssGetSFcnParam(S,15))" /* number of nodes */
#define M_PTS "mxGetPr(ssGetSFcnParam(S,16))" /* number of measurement points */
#define LENGTH_STORE "mxGetPr(ssGetSFcnParam(S,17))" /* length of store [m]*/
#define LENGTH_MANTLE "mxGetPr(ssGetSFcnParam(S,18))" /* length of mantle [m]*/
#define N_PARAMETER 19

//InputVector:
#define T_AMB "*u[0]" /* ambient temperature */
#define FLOW_ID_C "*u[1]" /* flowd ID collector */
#define T_IN_C "*u[2]" /* inlet temperature */
#define MDOT_IN_C "*u[3]" /* massflow */
#define PRESS_IN_C "*u[4]" /* pressure */
#define FLUID_ID_C "*u[5]" /* fluid ID (defined in CARNOT.h) */
#define PERCENT_C "*u[6]" /* mixture (defined in CARNOT.h) */
#define D_IN_C "*u[7]" /* diameter at inlet in m */
#define CON_C "*u[8]" /* constant term in pressure drop */
#define LIN_C "*u[9]" /* linear term in pressure drop */
#define QUA_C "*u[10]" /* quadratic term in pressure drop */
#define NEG_MASSFLOW "*u[11]" /* flag for negative massflow */
#define FLOW_ID_W "*u[12]" /* flowd ID water */
#define T_IN_W "*u[13]" /* inlet temperature */
#define MDOT_IN_W "*u[14]" /* massflow */
#define PRESS_IN_W "*u[15]" /* pressure */
#define FLUID_ID_W "*u[16]" /* fluid ID (defined in CARNOT.h) */
#define PERCENT_W "*u[17]" /* mixture (defined in CARNOT.h) */
#define D_IN_W "*u[18]" /* diameter at inlet in m */
#define CON_W "*u[19]" /* constant term in pressure drop */
#define LIN_W "*u[20]" /* linear term in pressure drop */
#define QUA_W "*u[21]" /* quadratic term in pressure drop */
#define N_INPUT 22

//StateVector:

//Water
#define TW_N_BELOW x[i-1]
#define TW_N_ABOVE x[i+1]
#define TW_N x[i] // actual node temperature water
#define TOP_W (nodes-1)
#define BOTTOM_W 0

//Collector-fluid
#define TNC_N_BELOW x[i+nodes-1]
#define TNC_N_ABOVE x[i+nodes+1]
#define TNC_N x[i+nodes] //temperature in the part of the collector fluid which 'belongs' to node i of water
#define TOP_C (2*nodes-1)
#define BOTTOM_C nodes

static int geometry_init = 0;

//needed for geometrical computations in MDL_DERIVATIVES
//defined global to be able to free memory in MDL_TERMINATE
static double *volW;
static double *volC;
static double *bMa;
static double *bMi;
static double *bSa;
static double *bSi;
static double *bIso;
static double *s;
static double *delta_h;

#define MDL_CHECK_PARAMETERS
#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

/*
function mdlCheckParameters:
validates parameters and returns error-messages if necessary
*/
static void mdlCheckParameters(SimStruct *S)
{
 if (M_PTS > NODES)
 {
 ssSetErrorStatus(S,"Error: number of measurement points must be smaller or equal number of nodes");
 }
}
#endif

 Appendix B
Appendix B

```c
return;
}
if ( LAMBDA_STORE < 0 || LAMBDA_MANTLE < 0 || LAMBDA_ISOLATION < 0)
{
    ssSetErrorStatus(S,"Error: All heat conductivities must be positive");
    return;
}
if (ALPHA_AMB<0)
{
    ssSetErrorStatus(S,"Error: heat loss coefficient must be positive");
    return;
}
if (LENGTH_MANTLE > LENGTH_STORE)
{
    ssSetErrorStatus(S,"Error: mantel must have a shorter or equal length as store");
    return;
}
if (TINI<-273.15)
{
    ssSetErrorStatus(S,"Error: Initial temperature can't be less than 0 K");
    return;
}
if(IOISATION_D < MANTLE_D_OUT || MANTLE_D_OUT < MANTLE_D_IN || MANTLE_D_IN < STORE_D_OUT ||
  STORE_D_OUT < STORE_D_IN)
{
    ssSetErrorStatus(S,"Error: correct sequence of diameters must be:
d isolation > d_mantle_out > d_mantle_in >
d_store_out > d_store_in");
    return;
}
/*if (MANTLE_FEED_PIPE_D > (0.5*(MANTLE_D_IN-STORE_D_OUT)))
{
    ssSetErrorStatus(S,"Error: Mantle feed pipe too tall. Won't fit...");
    return;
}*/
#endif

/*
function mdlInitializeSizes:
specifies the numbers of parameters, number ports, ports' width and more initialisation
*/
static void mdlInitializeSizes(SimStruct *S)
{
    int_T nInputPorts  = 3;  // number of input ports
    int_T nOutputPorts = 2;  // number of output ports
    int_T needsInput   = 1;  // direct feed through
    int_T inputPortIdx  = 0; // counter variables for initialisation-loop
    int_T outputPortIdx = 0;

    ssSetNumSFcnParams(S, N_PARAMETER);  // Number of expected parameters
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))
    {
        return;
    }

    // Register the number and type of states the S-Function uses
    ssSetNumContStates(    S, (2*NODES));   // number of continuous states
    ssSetNumDiscStates(    S,   0);   // number of discrete states

    // Configure the input ports. First set the number of input ports.
    if (ssGetNumInputPorts(S, nInputPorts)) return;    //number of input ports
    ssSetInputPortWidth(S,0,1); //number of elements the ports transmit
    ssSetInputPortWidth(S,1,11);
    ssSetInputPortWidth(S,2,10);
```
// initialize the ports concerning direct feed through
for(inputPortIdx; inputPortIdx < nInputPorts; inputPortIdx++)
{
 ssSetInputPortDirectFeedThrough(S, inputPortIdx, needsInput);
}

// configure the output ports. First set the number of output ports.
if (!ssSetNumOutputPorts(S, nOutputPorts)) return; // number of output ports
ssSetOutputPortWidth(S, 0, M_PTS + 4); // number of elements the ports transmit
ssSetOutputPortWidth(S, 1, M_PTS + 4);

ssSetNumSampleTimes(S, 1); // number of sample times

// Set size of the work vectors
ssSetNumRWork(S, 0); /* number of real work vector elements */
ssSetNumIWork(S, 0); /* number of integer work vector elements */
ssSetNumPWork(S, 0); /* number of pointer work vector elements */
ssSetNumModes(S, 0); /* number of mode work vector elements */
ssSetNumNonsampledZCs(S, 0); /* number of nonsampled zero crossings */

// validate parameters at the beginning of the simulation
if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S))
{
 mdlCheckParameters(S);
}
}

/*
function mdlInitializeSampleTimes:
 Specify that we inherit our sample time from the driving block.
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, 0.0);
 ssSetOffsetTime(S, 0, 0.0);
}
#define MDL_INITIALIZE_CONDITIONS

/*
function mdlInitializeConditions:
 Initializes the states vector
*/
static void mdlInitializeConditions(SimStruct *S)
{
 real_T *x0 = ssGetContStates(S); // get pointer to the states vector at beginning
 double t0 = TINI;
 int nodes = (int)NODES;
 int i;
 for (i = BOTTOM_W; i <= TOP_C; i++)
 {
 x0[i] = t0; // initialized with TINI
 }
}

/*
function mdlOutputs:
 Calculates pressure drops and fills output vector with values
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
 real_T *y = ssGetOutputPortRealSignal(S, 0);
 real_T *x = ssGetContStates(S);
 InputRealPtrsType u = ssGetInputPortSignalPtrs(S, 0);

 // get work data from user input
 int nodes = (int)NODES;
 int mpts = (int)M_PTS;
 double dstoreIn = STORE_D_IN;
 double dmantleIn = MANTLE_D_IN;

// deltas of pressure drop coefficients
double conW = 0.0;
double quaW = 0.0;
double conC = 0.0;
double quaC = 0.0;

double interval_size, pW, pC, rho, v, re, zeta, dp, pdyn, zeta_additional_store, zeta_additional_mantle;
int i, location, inverse;

// eliminate inversed thermocline
// you can comment out following lines for simulating just cool down
// if you don't you may have one value which is very different to the other
// this effect causes on geometry (some nodes may have a larger surface to cool down)
/*
do{
 inverse = 0;
 for(i = TOP_W; i > BOTTOM_W; i--)
 {
 if (TNW < TNW_BELOW)
 {
 TNW = 0.5*(TNW+TNW_BELOW); // mix the two nodes
 TNW_BELOW = TNW;
 }
 if(TNC < TNC_BELOW) // collector fluid has the same number of nodes as water
 {
 TNC = 0.5*(TNC+TNC_BELOW);
 TNC_BELOW = TNC;
 }
 }
} while (inverse);*/

// Calculations for the store:
zeta_additional_store = ZETA_ADDITIONAL_STORE;
// friction: calculate only if there is massflow
pW = 0.0;
rho = density(FLUID_ID_W, PERCENT_W, T_IN_W, PRESS_IN_W);
if (fabs(MDOT_IN_W) > 0.0 && FLOW_ID_W > 10000.0)
{
 v = 4.0 * MDOT_IN_W / (rho * STORE_FEED_PIPE_D * STORE_FEED_PIPE_D * PI);
 re = v * STORE_FEED_PIPE_D / viscosity(FLUID_ID_W, PERCENT_W, T_IN_W, PRESS_IN_W);
 zeta = 1.0 + zeta_additional_store; // sharp edged entry + possible bends
 pdyn = rho*v*v*0.5;
 pW = zeta*pdyn;
 quaW = zeta*pdyn/(MDOT_IN_W*MDOT_IN_W);
}

// hydrostatic pressure
if (FLOW_ID_W > 20000.0)
{
 dh = dstoreIn/nodes;
 dp = 0.0;
 for (i = BOTTOM_W; i <= TOP_W; i++)
 {
 dp += rho*GRAV*dh;
 }
 pW += dp;
 conW += dp;
}

// set temperature of every measurement-point from bottom (0) to top (mpts-1)
interval_size = nodes/mpts;
for(i = 0; i < mpts; i++)
{
 location = (int)*interval_size;
 y[i] = x[location];
}
y[mpts-1] = x[TOP_W]; // temperature of the top node
// pressure
y[mpts] = PRESS_IN_W + pW;
// pressure drop terms
y[mpts+1] = CON_W + conW;
y[mpts+2] = LIN_W;
y[mpts+3] = QUA_W + quaW;

//Calculations for the collector fluid
zeta_additional_mantle = ZETA_ADDITIONAL_MANTLE;
// friction: calculate only if there is mass flow
pC = 0.0;
rho = density(FLUID_ID_C, PERCENT_C, T_IN_C, PRESS_IN_C);
if (fabs(MDOT_IN_C) > 0.0 && FLOW_ID_C > 10000.0) {
v = 4.0 * MDOT_IN_C / (rho * MANTLE_FEED_PIPE_D * MANTLE_FEED_PIPE_D * PI);
re = v * MANTLE_FEED_PIPE_D / viscosity(FLUID_ID_C, PERCENT_C, T_IN_C, PRESS_IN_C);
zeta = 1.0 + zeta_additional_mantle; // sharp edged entry + possible bends
pdyn = rho*v*v*0.5;
pC = -zeta*pdyn;
quaC = zeta*pdyn/(MDOT_IN_C*MDOT_IN_C);
}
//hydrostatic pressure
if (FLOW_ID_C > 20000.0)
{
 dh = dmantleIn/nodes;
dp = 0.0;
for (i = BOTTOM_C; i <= TOP_C; i++)
{
 dp += rho*GRAV*dh;
}
}

// set temperature of every measurement-point from bottom to top
interval_size = nodes/mpts;
for(i = mpts+4; i < 2*mpts+4; i++)
{
 location = (i-4)*interval_size;
y[i] = x[location];
}
y[mpts+4] = x[BOTTOM_C]; // avoid failure in case of rounding
y[2*mpts+4] = PRESS_IN_C + pC; // temperature of the top node

#define MDL_DERIVATIVES
/*
function mdlDerivatives:
Calculates the derivatives of the temperatures for each node by means of the differential equations noted at the beginning
*/
static void mdlDerivatives(SimStruct *S)
{
 //get pointers to derivatives-, states- and input-vector
 real_T *dx = ssGetdX(S);
 real_T *x = ssGetContStates(S);
 InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);

 //allocate memory for geometrical values of each node dynamically
 int nodes=NODES;
 *volW;
 *volC;
 *bMa;
 *bMi;
 *bSa;
 *bSi;
 *bso;
 *s;
static double *delta_h;
// work data from user input
double dstoreln = STORE_D_IN;
double dstoreOut = STORE_D_OUT;
double dmantleln = MANTLE_D_IN;
double dmantleOut = MANTLE_D_OUT;
double disolation = ISOLATION_D;
double dh = dstoreln / nodes;
double lengthStore = LENGTH_STORE;
double lengthMantle = LENGTH_MANTLE;
double lambdaS = LAMBDA_STORE;
double lambdaM = LAMBDA_MANTLE;
double lambdaIso = LAMBDA_ISOLATION;
double Tamb = T_AMB;
double QalphaAmb = ALPHA_AMB;
double dhyd = MANTLE_D_IN - STORE_D_OUT; // hydraulic diameter of the mantle
bool samevolumes = SAMEVOLUMES;
double cC, cW, rhoW, rhoC;
double alpha, volWBelow, volCBelow, bMaBelow, bMiBelow, bSaBelow, bSiBelow, blsobelow, Vist, Vsoll, border_up, border_down;
double QalphaMantle, lambdaC, lambdaW, negflow;
int i = 0;
int l = 0;
int neg = 0;
int count = 0;
// geometry
int k = 1;
int stop = 0;
if(geometry_init == 0)
{
 volW = (double*) malloc(nodes * sizeof(double));
 volC = (double*) malloc(nodes * sizeof(double));
 bMa = (double*) malloc(nodes * sizeof(double));
 bMi = (double*) malloc(nodes * sizeof(double));
 bSa = (double*) malloc(nodes * sizeof(double));
 bSi = (double*) malloc(nodes * sizeof(double));
 s = (double*) malloc(nodes * sizeof(double));
 delta_h = (double*) malloc(nodes * sizeof(double));
 if(TOP_W%2 == 0) // odd number of nodes
 {
 stop = (TOP_W / 2) + 1;
 }
 else // even number of nodes
 {
 stop = (TOP_W + 1) / 2;
 }
 for(i = TOP_W; i>=stop; i--)
 {
 if(i == TOP_W) // initialisation with 0, because there's no “below”- value at the beginning
 {
 volWBelow = 0;
 volCBelow = 0;
 bMaBelow = 0;
 bMiBelow = 0;
 bSaBelow = 0;
 bSiBelow = 0;
 blsobelow = 0;
 }
 else
 {
 volWBelow += volW[i+1];
 volCBelow += volC[i+1];
 bMaBelow += bMa[i+1];
 bMiBelow += bMi[i+1];
 bSaBelow += bSa[i+1];
 bSiBelow += bSi[i+1];
 blsobelow += blsobelow[i+1];
 }
 }
 // same volumes
 if(samevolumes == true)
```c
Vsoll = (dstoreIn*dstoreIn/4)*PI/nodes*lengthStore;
border_up = 91;//avoid problems caused by imprecision at Vist-calculation
border_down = -1;
alpha = ALPHA_START;
do {
    s[i] = 2 * sin(alpha*PI/180) * 0.5 * dstoreIn;
    Vist = (((alpha/180)*0.25*dstoreIn*dstoreIn*PI) – 
          (0.5*s[i]*(cos(alpha*PI/180)*0.5*dstoreIn)))*lengthStore - volWBelow;
    if((Vist-Vsoll) < 0.0) {
        border_down = alpha;
        alpha = (border_up+alpha)/2;
    } else {
        border_up = alpha;
        alpha = (border_down+alpha)/2;
    }
}while(fabs(Vist-Vsoll) > MAX_DIFF);
//****************************************************************************************************************
//same height
//****************************************************************************************************************
else {
    alpha = acos((0.5*dstoreIn-k*dh) / (0.5*dstoreIn)) * 180 / PI;
    s[i] = 2 * sin(alpha*PI/180) * 0.5 * dstoreIn;
    Vist = (((alpha/180)*0.25*dstoreIn*dstoreIn*PI) – 
          (0.5*s[i]*(cos(alpha*PI/180)*0.5*dstoreIn)))*lengthStore - volWBelow;
}
//****************************************************************************************************************
s[TOP_W-i+1] = s[i];
volW[i] = Vist/(((alpha/180)*0.25*dstoreIn*dstoreIn*PI) - (0.5*[0.5*dstoreIn-k*dh])*lengthStore - volWBelow;
volW[TOP_W-i] = volW[i];//reflect to the other side
volC[i] = (alpha/360)*PI*0.25*(dmantleIn*dmantleIn-dstoreOut*dstoreOut)*lengthMantle - volCBelow;
volC[TOP_W-i] = volC[i]; //reflect to the other side
bMa[i] = (alpha/360)*dmantleOut*PI - bMaBelow;
bMa[TOP_W-i] = bMa[i];  //reflect to the other side
bMi[i] = (alpha/360)*dmantleIn*PI - bMiBelow;
bMi[TOP_W-i] = bMi[i];  //reflect to the other side
bSa[i] = (alpha/360)*dstoreOut*PI - bSaBelow;
bSa[TOP_W-i] = bSa[i];  //reflect to the other side
bSi[i] = (alpha/360)*dstoreIn*PI - bSiBelow;
bSi[TOP_W-i] = bSi[i];  //reflect to the other side
bIso[i] = (alpha/360)*disolation*PI - bIsobelow;
bIso[TOP_W-i] = bIso[i]; //reflect to the other side
}
//center node (if it exists)
if(TOP_W%2 == 0) {
    volWBelow += volW[stop];
    volCBelow += volC[stop];
    bMaBelow += bMa[stop];
    bMiBelow += bMi[stop];
    bSaBelow += bSa[stop];
    bSiBelow += bSi[stop];
    bIsobelow += bIsobelow;
    if(samevolumes==true) {
        volW[stop-1] = Vsoll;
    } else {
        volW[stop-1] = (0.25*dstoreIn*dstoreIn*PI)*lengthStore - 2*volWBelow;
    }
    volC[stop-1] = (0.25*0.5*PI*dmantleIn*dmantleIn-dstoreOut*dstoreOut)*lengthMantle - 2*volCBelow;
    bMa[stop-1] = 0.5*dmantleOut*PI - 2*bMaBelow;
    bMi[stop-1] = 0.5*dmantleIn*PI - 2*bMiBelow;
}
```
Appendix B

\[b_{Sa}[stop-1] = 0.5 \times d_{storeOut} \times \pi - 2 \times b_{SaBelow}; \]
\[b_{Si}[stop-1] = 0.5 \times d_{storeIn} \times \pi - 2 \times b_{SiBelow}; \]
\[b_{Isobelow} = 0.5 \times d_{isolacion} \times \pi - 2 \times b_{Isobelow}; \]

\[
\text{geometry_init} = 1;
\]

// equations
i = 0;
for(i = TOP_W; i >= BOTTOM_W; i--)
{
 negflow = NEG_MASSFLOW;
 if(negflow == 1)
 {
 neg = TOP_W - i;
 count = -1;
 }
 else
 {
 neg = i;
 count = 1;
 }
}

// heat capacity and density
\[c_W = \text{heat_capacity}(\text{FLUID_ID_W, PERCENT_W, TNW, PRESS_IN_W}); \]
\[c_C = \text{heat_capacity}(\text{FLUID_ID_C, PERCENT_C, TNC, PRESS_IN_C}); \]
\[\rho_W = \text{density}(\text{FLUID_ID_W, PERCENT_W, TNW, PRESS_IN_W}); \]
\[\rho_C = \text{density}(\text{FLUID_ID_C, PERCENT_C, TNC, PRESS_IN_C}); \]
\[\lambda_C = \text{thermal_conductivity}(\text{FLUID_ID_C, PERCENT_C, TNC, PRESS_IN_C}); \]
\[\lambda_W = \text{thermal_conductivity}(\text{FLUID_ID_W, PERCENT_W, TNW, PRESS_IN_W}); \]
\[\text{NUSSELT_MANTLE} = \frac{\lambda_C}{\text{lengthMantle}}; \]

// water
\[d_{x[i]} = 0; \]

// heat conduction in the medium
if(<TOP_W)
{
 \[d_{x[i]} = \lambda_W \times s[i+1] \times \text{lengthStore} / \text{dh} \times (\text{TNW ABOVE} - \text{TNW}); \]
}
if(>BOTTOM_W)
{
 \[d_{x[i]} = \lambda_W \times s[i] \times \text{lengthStore} / \text{dh} \times (\text{TNW} - \text{TNW BELOW}); \]
}

// massflow
if(>BOTTOM_W)
{
 \[d_{x[i]} = -\frac{\text{MDOT_IN_W} \times c_W \times (\text{TNW} - \text{TNW BELOW})}{\rho_W \times \text{volW}[i] \times \text{lengthW}}; \]
}
else
{
 \[d_{x[i]} = -\frac{\text{MDOT_IN_W} \times c_W \times (\text{TNW} - \text{T_IN_W})}{\rho_W \times \text{volW}[i] \times \text{lengthW}}; \]
}

// heat conduction --> heat exchange
\[d_{x[i]} += \frac{2 \times (\text{TNW} - \text{TNC})}{(1/(QalphaMantle \times b_{Sa[i]} \times \text{lengthMantle})) + (0.5 \times (\text{dstoreOut-dstoreIn})/(\text{lengthMantle} \times (0.5 \times (b_{Sa[i]} + b_{Si[i]))))}; \]
// heat loss at the outer positions (there may be no mantle)
if(lengthStore != lengthMantle)
{
 // *heat conduction through store*/
 // *heat conduction through isolation*/
 // *convection at the surface*/
 \[d_{x[i]} += 2 \times (\text{TNW} - \text{Tamb}) / ((0.5 \times (\text{dstoreOut-dstoreIn})/(\text{lengthStore-lengthMantle} \times (0.5 \times (b_{Sa[i]} + b_{Si[i]))))) + (0.5 \times (\text{disolation-dstoreOut})/(\text{lengthIsolation} \times (0.5 \times (b_{Sa[i]} + b_{Isobelow[i]))))) + (1/(QalphaAmb \times \text{bIso[i]} \times (\text{lengthStore-lengthMantle}))))}; \]
// heat loss at front and back surface
\[d_{x[i]} = -\frac{2 \times (\text{TNW} - \text{Tamb})}{(0.5 \times (\text{dstoreOut-dstoreIn})/(\text{lengthStore} \times (\text{lengthMantle} \times (0.5 \times (b_{Sa[i]} + b_{Isobelow[i]))))) + (0.5 \times (\text{disolation-dmantleOut})/(\text{lengthIsolation} \times (\text{lengthStore} \times (\text{lengthMantle}))) + (1/(QalphaAmb \times \text{volW[i]} \times \text{lengthStore})))); \]

// normalize
\[d_{x[i]} = d_{x[i]} / (\rho_W \times \text{volW[i]} \times \text{cW}); \]
// collector fluid
if(==TOP_W)
{
 // Initialisation of all derivatives before calculating
 for(i=0;i<=TOP_W;i++)
 {

B10
dx[i+\text{nodes}] = 0;

//heat conduction in the medium
if(i < \text{TOP_W})

 dx[i+\text{nodes}] += \lambda_C \cdot 0.5 \cdot (\text{dmantleIn} - \text{dstoreOut}) \cdot \text{lengthMantle} \cdot (0.5 \cdot (\text{bM}[i]+\text{bSa}[i])) \cdot (\text{TNC_ABOVE} - \text{TNC});
//downwards to node

for(i>\text{BOTTOM_W})

 dx[i+\text{nodes}] -= \lambda_C \cdot 0.5 \cdot (\text{dmantleIn} - \text{dstoreOut}) \cdot \text{lengthMantle} \cdot (0.5 \cdot (\text{bM}[i]+\text{bSa}[i])) \cdot (\text{TNC} - \text{TNC_BELOW});
//downwards from node

//Massenströme
if(((\text{neg} < \text{TOP_W}) \&\& (\text{count} == 1)) || ((\text{neg} > \text{BOTTOM_W}) \&\& (\text{count} == (-1))))

 dx[\text{neg_nodes}] += 0.5 \cdot \text{MDOT_IN_C} \cdot \text{cC} \cdot (x[\text{neg_nodes}+\text{count}] - x[\text{neg_nodes}]);

//heat loss by mass flow
else

 dx[\text{neg_nodes}] += 0.5 \cdot \text{MDOT_IN_C} \cdot \text{cC} \cdot (\text{T_IN_C} - x[\text{neg_nodes}]);

//position at the inlet

//heat conduction $$\rightarrow$$ heat exchange

//heat loss at ambient

//NORMALIZE (can’t be done until all calculations on the derivatives are done because of different ways of passing the loop in case of neg. mass flow)

for(i = \text{TOP_W}; i >= \text{BOTTOM_W}; i--)

 dx[i+\text{nodes}] = dx[i+\text{nodes}] / (\rho_C \cdot \text{volC}[i] \cdot \text{cC});

//free allocated memory
/*free(volW);
free(volC);
free(bMa);
free(bMi);
free(bSa);
free(bSi);
free(bIso);
free(s);
free(delta_h);*/

/*
function mdlTerminate:
needed routine to terminate simulation
*/

static void mdlTerminate(SimStruct *S)
{

 geometry_init = 0;
 free(volW);
 free(volC);
 free(bMa);
 free(bMi);
 free(bSa);
 free(bSi);
 free(bIso);
 free(s);
 free(delta_h);
}

#endif MATLAB_MEX_FILE // Is this file being compiled as a MEX-file?
#include "simulink.c" // MEX-file interface mechanism
#include "cg_sfun.h" // Code generation registration function
#endif
Appendix C:
Technical Details and Drawings – Prototype Absorber
3D Absorber Model

Isometric View of the Absorber
Appendix C

3D Collector Model

- Collector Inlet
- Collector Outlet
- Heat Strengthened Low Iron Glas
- Aluminium Casing
- Groove for Installation Purposes
Appendix D:
Technical Drawing – Storage Tank
Appendix E:
Technical Design – System Support
Concerning the system design, several system supports are analysed. A majority of the systems on the market include a large number of single components, which have a negative influence on installation time and quality (Figure E.1). Another problem showing up is the necessity to use many different tools during system construction.

![Diagram](image)

List of Parts:

<table>
<thead>
<tr>
<th>A+B</th>
<th>2x Storage Tank Support</th>
<th>H</th>
<th>12 x Mounting Rail Nut (M8 & M10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2 x Collector Mounting Rail</td>
<td>I</td>
<td>24 x Screws M8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 x Screw Nut M8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 x Washer</td>
</tr>
<tr>
<td>D+E+F</td>
<td>à 2 x L-Section</td>
<td>J</td>
<td>4 x Screws M10</td>
</tr>
<tr>
<td>G</td>
<td>4 x Collector Fixation</td>
<td>K</td>
<td>4 x Anchor Bolt</td>
</tr>
</tbody>
</table>

Figure E.1: Typical Amount of Single Components for a Thermosyphon System

The aim of the development is to provide a support consisting of few parts only which can be put together using a minimum amount of different tools. To reduce installation time a preassembled system is proposed. The system stand is mounted to the collector at the manufacturer. At the installation site it is simply opened and fixed with one screw at each lower corner (Figure E.2). To reduce material usage, the collector is used as a supporting system part, consequently, the collector mounting is found just in the upper collector part (Figure E.3). To reduce production cost only semi-finished products like L sections are proposed.
For the upper pivot a special design allowing the preassembly at the manufacturer and adjusting the system tilt angle at 35° as shown in Figure has been developed in the research project. This fact implements a high intrinsic safety to the system installation as the angle of the vertical support is limited to angles of 0–90°.
A further step that has to be undertaken for the improved close to production thermosyphon system is the verification of the system stability considering standard DIN 1055–4 (DIN, 2005).
Appendix F:

Bibliography
SOLAR COLLECTORS

STORAGE TANKS

(THERMOSYPHON) SOLAR DOMESTIC HOT WATER SYSTEMS

Appendix F

Appendix G:
Publications

