A Semantics-based Approach to Sensor Data Segmentation in Real-time Activity Recognition

Darpan Triboana, Liming Chena,*, Feng Chena, Zumin Wangb

aContext, Intelligence and Interaction Research Group, De Montfort University, UK
bDepartment of Information Engineering, Dalian University, China

Abstract

Activity Recognition (AR) is key in context-aware assistive living systems. One challenge in AR is the segmentation of observed sensor events when interleaved or concurrent activities of daily living (ADLs) are performed. Several studies have proposed methods of separating and organising sensor observations and recognise generic ADLs performed in a simple or composite manner. However, little has been explored in semantically distinguishing individual sensor events directly and passing it to the relevant ongoing/new atomic activities. This paper proposes Semiotic theory inspired ontological model, capturing generic knowledge and inhabitant-specific preferences for conducting ADLs to support the segmentation process. A multithreaded decision algorithm and system prototype were developed and evaluated against 30 use case scenarios where each event was simulated at 10sec interval on a machine with i7 2.60GHz CPU, 2 cores and 8GB RAM. The result suggests that all sensor events were adequately segmented with 100% accuracy for single ADL scenarios and minor improvement of 97.8% accuracy for composite ADL scenario. However, the performance has suffered to segment each event with the average classification time of 3971ms and 62183ms for single and composite ADL scenarios, respectively.

Keywords: Sensor Segmentation, User Preferences, Activities of Daily Living

*Corresponding author

Email addresses: darpan.triboan@my365.dmu.ac.uk (Darpan Triboan), liming.chen@dmu.ac.uk (Liming Chen), fengchen@dmu.ac.uk (Feng Chen), wangzumin@dlu.edu.cn (Zumin Wang)
1. Introduction

Ambient Assistive Living (AAL) systems [1, 2, 3] are being developed as a tool to support increasing ageing population [4] to carry out their Activities of Daily Living (ADL) and enable health care services to achieve higher quality-of-care. Human Activity Recognition (HAR) is a key part of AAL systems to allow accurate and timely assistance to the inhabitant. The application of HAR approaches can also be applied to other domains such as security, surveillance, smart cities, and e-commerce. The process of activity recognition (AR) can be described in five phases described in Fig. 1.

![Figure 1: Five interdependent phases of AR: i) data collection, ii) segmentation of sensor observations, iii) knowledge modelling, iv) AR, and v) activity learning.](image)

In the initial data collection phase, environmental changes and nearly every inhabitant’s actions can be now sensed by the advancement of ubiquitous sensing technology. The wide variety of sensing technologies can be categorised as vision and sensor-based approaches. Whilst the vision-based sensing approach has been successfully applied in areas such as security surveillance, the sensor based approach has become more appealing in smart home (SH) environments due to lower ethical and privacy concerns. The sensor-based sensing approach can be classified into ambient, dense (or embedded) and wearable sensing [5]. The wearable sensing can be further classified into outerwear and implantable [5]. Due to such a diversity in sensors and the type of contextual data being generated
at different frequencies simultaneously, one inherent challenge is to separate the
sensor events in relation to the ongoing activity queue to later performing AR.

The second segmentation phase is responsible for organising the observed
sensor events based on the ongoing activities or detecting new activities per-
formed by a single inhabitant in composite scenarios is a major challenge being
investigated in this paper. In order to make segmentation decisions, prior knowl-
edge model is required to verify association links such as what everyday object is
the sensor attached to, contextual information (i.e., location, time and ambient
attributes) of the object and what ADL(s) is this object is used for. The data
from the set of segmented sensor observations for a given activity is later anal-
ysed by the AR algorithms to determine whether the actions were completed
with a satisfactory evidence (i.e., if the cooker knob rotated to low, medium,
high or off state) and provide effective assistance when necessary. Therefore,
a correctly segmented set of sensors can boast AR algorithm accuracy, perfor-
ance and reduces computational resources being wasted on irrelevant sensor
data.

The third phase is to develop a knowledge model normally based on using
data-driven, knowledge-driven and hybrid approach. In the data-driven (DD)
approach, activity models are generated after processing pre-recorded
datasets using generative or discriminative classification techniques. The popu-
lar generative modelling methods are Bayesian networks, partial Markov de-
cision process (POMDP) [9], a variation of Markov model to model action
sequences as finite states with their transitional probabilities and continuous
state-space model (CSSM) [10]. Whereas, conditional random field (CRF) and
support vector machine (SVM) are widely used as discriminative methods to
improve the accuracy and performance of the activity recognition [11]. In con-
trast to DD approach, the KD approach is where domain experts in the field
of interest conceptualise and intricately describe factual elements of the being
into a model that is interlinked, known as the ontological model. The KD ap-
proach uses formal and logical theories to create a well-defined knowledge that
is based on the ontological model that is human and machine friendly to in-
terpret. The KD approach overcomes the “cold start” issue by not processing a pre-recorded dataset, however, falls short in handling unseen or uncertain data [1]. The shared problem for both of these approaches is that it assumes complete description of all the entities and concepts within the activity model. Therefore, the hybrid approach [12, 13, 14] is used to combine the expressivity power from KD and the ability to handle unseen or uncertainty in events from the DD approach to incrementally grow the initial model.

The last two phases, activity classification and activity learning approaches [13] are influenced by the selection of modelling approach and the quality of the segmented sensor data for reasoning. Activity classification is described as a two-fold process: verification of the relationships between ADLs and a set of sensor observations; and validation of the activity occurring with a degree of confidence. Whereas, the activity learning approaches evolve initial knowledge model by analysing the AR results and sensor observations to discover new activities, patterns, and inhabitant’s preferences in real-time or offline. The data-driven approaches are commonly adopted for this purpose. The activity classification and activity learning topics are beyond the scope of this paper, nevertheless, for more details see [15, 16]. This paper will mainly focus on verification phases of the activity classification process to reduce the computational complexity and time delay to incrementally grow the set of segmented data for a given activity as the events unfold.

There are a number of human factors that further increase the complexity when designing the semantical knowledge model, developing segmentation and AR algorithms. It is nature that one can perform single or composite (multiple) ADLs at a given time as illustrated in Fig. 1. Individual ADLs (A1, A2 and A3), can have a set of atomic actions (\{abcdef\}, \{123456\} and \{XYZ\}) which can be performed in any order. A single ADL (A1) can also be performed along with multiple other ADLs; either incrementally (i.e. A1 then A2), concurrently (i.e. A1 with A2), and in parallel (A2 and A3 running simultaneously). Furthermore, an individual is subjected to follow a specific tradition, ritual or culture to perform a given activity which cannot be generalised when describing ADL. In
addition, even when two individuals share the same values, they may still have their unique preferences to perform the same activity which can also change over time.

In the remainder of the paper, the existing studies related to segmentation, semantical knowledge modelling and AR process are reviewed in Section 2. A novel segmentation method and algorithm is then proposed in Section 3 with system implementation details and evaluation results in Section 4 and 5. The conclusion and future research direction is discussed in Section 6.

2. Related Work

Recent studies have applied time series (fixed/dynamic time window\cite{17,18}), statistical and probabilistic \cite{19} based approaches which have failed to separate sensor observations based on the relation to ongoing activity in real time. Therefore, KD approach has received an increasing amount of interest to express complex relationships between sensors and domain-specific knowledge. The process of defining complex sets of relationships has been investigated in the past studies and they can be categorised as syntactical, semantical and pragmatic in information theory\cite{20}. In syntactical approach, a concept represented in a two or more non-syntactically equivalent statements are assumed to be statements of independent concepts. In contrary, the semantical approach is concerned about representing the meaning of a concept using relationships\cite{20,21}, hence, the same concept can be syntactically represented in more than one statements but mean the same thing. The pragmatics approach studies the relations between a concept and inhabitant in a given context of interest. The benefit of adapting syntactical approach is that knowledge can be structured using defined syntax, queried and interpreted by the machine, however, suffer from the flexibility of expressing intricacy of relationships and meaning between two concepts that pragmatic and semantic approaches can provide. The semantic theory has its roots from semiotics in philosophy which in general is a study of signs and its significations (meaning)\cite{22}. These signs can be words, images, sounds, ges-
tures and objects. Hence, the semantical theory is studied heavily in cognitive philosophy, natural language and machine learning [23]. The following sections highlight recent studies proposed to segment sensor events that adapt the notions of above three information theories.

2.1. Semantical approaches: Indirect query and rules

Work in [24, 25] adopted ontological models to describe ADLs, environmental entities and their relations along with other methods to classify and infer unfolding activities. However, they do not directly inspect each arrived sensor event and then segment to the appropriate queue related to ongoing activities. Instead, the continuous queries or rules are executed on events stored in the database and knowledge model without using any automatic reasoners to determine the relationship between events and ADLs. Similarly, work in [26] proposed C-SPARQL, an extension to SPARQL Protocol and RDF Query Language (SPARQL) where individual sensor events in a stream are annotated with a timestamp and continuously queried using a specific window size. The key limitations of the approach are the classical multi-query optimisation problem where the challenge is to identify the common parts, adapting/reformulating the order in which queries are executed with the ability to dynamically change the window size. Another stem of work, [27, 28], used Semantic Web Rule Language (SWRL) based inferencing rules to define the nature of activities with a temporal representation technique. These SWRL rules and Java Expert System Shell (JESS) rule engines were used to segment the sensor events using their timestamp information and perform entailments for the complexity of the ongoing activities. One of the major limitations of this approach is that an attempt to use generic ontology reasoner is made, however, it is unclear if reclassification of the whole ontology is done incrementally or not. In the case of the non-incremental reclassification approach, the performance and scalability can degrade exponentially as the size of an ontological model and data grows. Furthermore, rules can be generated for general purpose and also for inhabitant specific preferences as provided in the study in [29]. However, each time the
new rules are added or updated to enrich the knowledge base (KB), the whole ontological model is reclassified. In addition, managing models generated using generic and inhabitant specific rules exclusively adds to the complexity further.

2.2. Syntactical approach: RDBMS and semantic KB mapping

Similarly, work in [30] presents a layered ontology and complex event processing (CEP) engine based framework, namely, AALISABETH, to segment the sensor observations. The framework integrates temporal based reasoning with a dynamic time window sizing mechanism to segment the incoming data and perform AR in real-time. The approach leverages Esper solution for CEP and D2RQ engine to map data into RDF graphs. Although the framework utilises highly optimised, scalable Esper CEP engine solution and is open source, the system falls short in directly segmenting the incoming sensor data semantically in real-time as it arrives from the sensor network. This limits the client applications to receive an event-based notification which is critical in an emergency situation such as fall detection. Another key limitation of the framework is that the event data from the sensor network is stored directly into a traditional relational database management system (RDBMS) without inspecting individual events and segmenting them appropriately or appending to an ongoing activity queue. Instead, to filter or segment sensor events for a given ADL, continuous queries are required to be executed in order to obtain a set of sensor events between a specific time range/number of records and then perform Web Ontology Language (OWL) based reasoning capabilities to find any relevance to the activity of interest. Alternatively, the Pellet reasoner which has incremental reasoning support (i.e., only affected changes in the ontology are classified) could be further utilised instead of creating an overhead to query and map each of the events from the RDBMS database using the D2RQ tool. Furthermore, the framework is not intended to cater for inhabitant’s preferences when performing a generic ADL.
2.3. Pragmatic approach: Precondition and evidential theory

Work in [31] presents an event filtering approach by adding preconditions with probabilities on the phases when carrying out each ADL in order to segment the incoming events. It is unclear how the algorithm can detect new activity when an action is shared amongst more than one activities and it can either be part of a main activity or precondition actions for another activity. For instance, *MozzarellaCheese* can be part of the precondition of *MakePizza* ADL and postcondition for *MakeCheesyToast* ADL. This approach has achieved good accuracy in segmenting and recognising composite activities but there is the scope for improvement in terms of recognising other scenarios. Another work in [32] leveraged evidential theory and proposed three segmentation algorithms based on location, activity model and dominant-centred (key actions for a activity) for non-interleaved and interleaved activities. The location and activity model-based segmentation algorithms fall short in distinguishing activities when performed in the same location and with similar everyday objects for activities compared to the dominant algorithm. There is a little implementation detail provided by the authors, however, one of the key limitations of all the three algorithms is the lack of support for user preferences and a reasoner to automatically detect and recognise the activity.

This paper makes five contributions by proposing: (i) a semantic-enabled segmentation approach which combines generic and personalised ADL knowledge that enables simple and composite ADLs to be recognised in real-time; (ii) a KB model capturing the relationships between entities in the house and ADLs; (iii) a pragmatic and light-weight mechanism to manage inhabitants specify preferences for conducting a given ADL; (iv) a semantical decision engine algorithm; (v) system implementation details and a prototype to evaluate the approach and present the findings.
3. The Proposed Semantical Segmentation Approach

The semantic theory based segmentation approach is proposed which analyses the relationship of the sensor event with an everyday object and its significance as an action to a set of known ADLs. This will enable disentangling composite activities with actions performed in no particular order and organise them separately to allow further activity classification and learning tasks.

A knowledge modelling building block is developed in Section 3.1 which conceptualises and captures the environmental context (i.e., ambient attributes, everyday objects, location, sensors), generic and inhabitant specific preferences to perform ADLs and their semantic relationships into an ontological model.

A semantical decision engine is developed in Section 3.2 to make segmentation decisions based on three inputs: the new observed sensor event, the ontological model and a set of previously segmented sensors for a given activity. A notion of multithreading is adapted to separate tasks of buffering sensor data stream, event recycling, decision engine, managing ADL threads and manipulating data from the Jena Fuseki [33] triplestore(TDB). This multithreading mechanism to semantically segment sensor event is described with a pseudo algorithm in Section 3.3.

![Figure 2: Overview of the semantically enabled segmentation approach with generic (T-box) and preferences (A-box) KB for reasoning.](image)

Figure 2: Overview of the semantically enabled segmentation approach with generic (T-box) and preferences (A-box) KB for reasoning.
Fig. 2 depicts the overall segmentation approach. As the sensor events are initially added to the data stream, multiple ADL threads, generic and preference, analyse the sensor events using decision engine and store the relevant events independently. Therefore, one sensor event can be shared between two different activity threads with different ADL goals. For instance, opening Fridge action detected by sensor \(e \) at \(T_n \) can be shared with MakeTea ADL and MakePasta ADL thread. The ADL threads manager creates a new ADL thread (NEW_ACTIVITY) only when the sensor event is not part of any ongoing ADL threads otherwise the event recycler thread updates the sensor data stream. There are two types of ADL threads being created to capture generic actions (sensor \(b \) attached to PastaBag), for a given activity (MakePasta), and if the observed event (sensor \(d \) attached to HotSauce at \(T_n \)) is part of the personalised actions for that activity (i.e., PrefMakeVegPasta). The decision engine determines if the new sensor event, along with the previous set of sensors for a given activity is part of the pre-defined generic set of actions by performing semantic reasoning and invoking queries to the TDB for personalised actions. The new preference thread (NEW_PREF_THREAD) is only created when the new sensor event is part of a personalised action for a given ongoing activity and there is no active preference thread. Moreover, each ongoing activity thread with the segmented set of sensors data will enable further validation of AR accuracy, timeout and completion procedures, i.e. storing relevant information and prompting the inhabitant when appropriate in future work.

3.1. ADL Relationships Modelling

The key building block of ADL modelling consists of three phases; (1) environmental context (EC) modelling, (2) semantical relationships (SR) modelling and (3) personalised (Pref) object interactions. In the first phase, the object-oriented notion (classes and instances) is adapted to conceptually describe the physical or metaphysical entities (ET) and their attributes as classes (C) to form an overall environmental context (EC) for a given smart home environment. The key entities considered are a person (X), rooms (Location,
and ambient characteristic (AC_p), sensor characteristics (So) and everyday fixed/portable objects (Obj_x); see eq. 1.

$$EC = \{X_n, L_m, AC_p, So, Obj_x\}$$ \hspace{1cm} (1)

The second phase records semantic relationship (SR) properties between EC classes and ADLs. The instances of EC classes (i.e., everyday objects) are then created for sensor environment (SE) to create a relationship (Re) between sensor event, object it is attached to and this object’s use in ADLs; see eq. 2. This abstraction in ADL actions description encourages decoupling, reuse and adding the further meaning of the actions to the activity using Re. For example, MakeTeaADL (subset of MakeHotDrinkADL) class describes the actions using hasHotDrinkType (R) relationship property with Tea (C) and the characteristics of the property are described to be only used for MakeHotDrinkADL (domain) and everyday objects that are used for HotDrinkType (range). This means if no other ADL that is a subset of MakeHotDrinkADL that has a hasHotDrinkType.
property with Tea, it can be deduced that this action is potentially a part of MakeTeaADL. Similarly, other actions for MakeTeaADL can be described using hasUtensil, hasContainer and hasAddings properties for using the kettle and adding sugar and milk to the teacup. Fig. 3 show the relationships between a set of EC classes and MakeTea ADL to show the meaning of inhabitant’s action.

Moreover, the sensor environment (SE) information is then encoded to describe existing set of EC items available in the given residential environment and the sensor attached to it as instances (Iw). Therefore, instances of EC(iECw) such as environmental objects (iObjw) and sensor (iSw) with their relevant classes (Cn) are explicitly described with the relationship (Re) between them initially. For example, to1 is an instance of ContactSensor (S) that isAttachedTo (R) a RedKettleObj1 (iObjw) which is a class type of Kettle (Objx). The observed values/states of an iSw are stored as primitive data types (ptu) for a single observation or creating another instance of an observation class containing the primitive data for multiple observations; see eq. 3

\[SR = ADL_n(R_e, EC_n) \rightarrow R_e \rightarrow SE; \] (2)

\[SE = I_w(R_e, S_w) \rightarrow R_e \rightarrow I_w(R_e, ET_k) \parallel I_w(R_e, \{pt_u\}) \] (3)

The final phase is to capture inhabitant specific preferences (Prefj) that are subjective to individual’s cultural background and rituals followed to carry out a given ADL. It is important to keep the generic (factual and commonly accepted by the wider community) and personalised sets of ADL description disjointed to avoid generalising or assuming both must be actioned to complete the activity. Therefore, instances that are members (Re) of Preference and ADLn classes are created to capture actions or ambient attributes using iECw that are specific to a person (Xs); see eq. 4 and 5 For example, an individual Bob (I) who is a type of Male (C) has set of instances of Preferences that are linked with hasPreference relationship (R). An example of a preference
instance is $\text{BobMakeSpicyTeaPref} (\text{Pref})$ which is a type of $\text{Preference} (C)$ and $\text{MakeTeaADL} (\text{ADL})$ with a set of iEC instances, i.e., $\text{GingerObj}(I)$ and $\text{CinnamonObj}(I)$. This statement means that Bob has a preference to make tea and he may like to put a ginger and cinnamon in his tea.

$$X_n = I_w(R_c, \text{Human} \subseteq \text{Male}) \rightarrow R_e \rightarrow \text{Pref}_1, ... \text{Pref}_j \quad (4)$$

$$\text{Pref}_j = I_w(R_c, \text{ADL}_n \cap \text{Preference}) \rightarrow R_e \rightarrow I_w(R_c, \text{iEC}_w) \quad (5)$$

3.2. Semantic Decision Engine

The enabling feature of the semantic-based decision engine is the ability to identify relationships between the sensor, everyday object and actions described in ADLs based on ontological model and triplestore querying. This allows decision engine to support ADL actions occurring in any order for single or multiple ADLs in a composite manner. The common ADL actions are automatically recognised using terminology box (T-box) reasoning method with incremental Pellet reasoner and inhabitant specific actions using assertion box (A-box) reasoning method. The decision engine is utilised by individual activity threads in order to find an association with new, previously observed events and candidate ADL class. The classification of candidate ADL class is continuously updated and refined with further evidence of actions that satisfies the ADL descriptions.

The decision engine takes three inputs, processes them into two stages and outputs the updated results. The three inputs are (1) semantic-based KB model created in Section 3.1 (2) activity thread (AT_n) attempting to find relations with the (3) new sensor event (e_m). Each AT_n contains structured information about generic and preferred actions observed as sensor events, ADL class and list of preferences matched that are associated to the inhabitant. The two-stage decision-making process updates the activity thread accordingly as the
new sensor events are inspected incrementally for any association.

\[AT_n = \{ \text{tbox[class : someADL, s\{..., e_m\}]} , \]
\[\text{abox[Pref_j[name : somePref, s\{..., e_m\}]} \} \tag{6} \]

In the first stage of the decision-making process, generic semantical relationships are traced from \(EC \) to \(SR \) and \(SR \) to \(SE \) compared to inverse when developing the KB model \[34\]. Therefore, the metadata of a sensor observation \(e_m \) is analysed to find the \(ET \) the sensor is attached to and deduce the potential \(R_n \) with a set of \(ADL_n \) description. This metadata within KB consists relationship properties such as domain and range for a given \(ET \). Therefore, the association between \(ET_k \), (i.e., everyday objects) and ADLs can be automatically inferred using semantic reasoners or simply querying the KB model. This process is known as terminology box (T-box) reasoning \[35\].

The second stage is only executed when the result returned from T-box reasoning identifies any conflicts with the ADL class description. The conflicts can be raised when a given sensor attached to an \(ET \) is forced to be part of a given ADL which is outside the restricted set of \(ET_k \). In this case, it is assumed that \(ET \) is part of inhabitant’s preferences or part of a new set of actions for \(ADL_n \). The preferences are currently pre-defined and stored as individuals containing a list of \(iEC_s \) that an inhabitant prefers to use to perform a given \(ADL \). Therefore, semantic queries are made to extract all preferences of the inhabitant (\(userID \)) for a given ADL (\(adlName \)) that as sensor observation (\(deviceID \)) as an action. This process is known as assertion box (A-box) reasoning.

The semantic reasoner carries out several tasks using T-box and A-box knowledge which includes but not limited to: satisfiability, subsumption, consistency checking equivalence, disjointness, and instance checking \[34, 39\]. The satisfiability task is to ensure the class description (axioms) is not contradictory. The subsumption task ensures class B satisfies all the inheriting properties (\(R \)) of parent class A. The consistency checking ensures classes and their instances
do not violate the axioms descriptions. The instance checking ensures the relationships with other instances are within the boundary of a set of classes it can subsume. The equivalence task is to match the two concepts with respect to its properties in contrary to disjointness tasks. The conjunctive querying answering is performed at the second phase of decision engine to identify inhabitant’s preferences with a given ET using relationships between instances of EC and ADLs.

Fig. 4 illustrates the three inputs taken by the decision engine to verify if the new sensor observation Ginger(e5) is part of the generic/personalised action of the ongoing MakeTea activity (AT1). Initially, a new activity thread, AT1, is created to add the first sensor observation, Fridge (e1), into the empty set of sensors and the results returned from two-stage reasoning process. In this case, e1 is inferred by the generic T-box reasoner to be part of KitchenADL in the first stage of decision engine. As the new sensor event, e2 occurs, the current AT1, temporarily add it to the list {e1, e2} and perform the generic reasoning again with the same activity result. This means that the action is part of A1, however, more than one sub-activities share the same actions. Similarly, other events are added to AT1 = {e1, e2, e3, e4} as they occurred with new MakeTea activity name which is a descendant class of MakeDrink and KitchenADL. Until
now, only first stage of decision process is performed due to generic nature of the ADL actions. The next sensor observation, e_5, is attached to Ginger running any personalised actions. The activity name, MakeTea of A_1 and the new sensor observation $Ginger(e_5)$ is used to perform subsumption reasoning in the first stage of decision engine and returned inconsistency in ADL description error. In the second phase, the decision engine checks if the $Ginger(e_5)$ sensor is part of an inhabitant’s preference(s) stored in the triplestore and add it to A_1. In this case, spicyTea preference was identified and as there were no sub-activity preference threads already active for A_1, new thread $Pref_1$ was created along with other missing spicyTea actions.

$$AT_1 = \{tbox\{name : makeTea, s : \{e_1, e_2, e_3, e_4\} \},
abox[Pref_1\{name : spicyTea, s : \{e_5\}, missing : \{\ldots\}\}]\}.$$ (7)

\begin{algorithm}
\caption{Pseudocode for Semantical Segmentation Algorithm}
\begin{algorithmic}
\Input{$e_m, T = EC, SR, ET, AT_1$}
\Output{void}
\If{$\neg \exists e_m : AT_1(e_m)$}
\State Class $c = DE.runTbox(e_m, AT_1, T)$ \Comment{1) T-box reasoning}
\If{$\neg c \supseteq AT_1$}
\If{$\exists AT_1.AboxT_a(e_m)$}
\State $AT_1.AboxT_a.add(e_m)$ \Comment{2) A-box reasoning}
\ElseIf{$\exists DE.queryTDB(e_m, AT_1.name, userID)$}
\State $AT_1.addAboxT(e_m)$ \Comment{2.1) create A-box thread}
\Else
\State $AT_1 \equiv c(e_m)$ \Comment{1.1) update ADL classification}
\EndIf
\EndIf
\Else
\State $AT_{n+1}(e_m)$ \Comment{1.2) create T-box thread}
\EndIf
\EndIf
\State $closure(AT_1)$ \Comment{3) completion and timeout procedures}
\end{algorithmic}
\end{algorithm}
3.3. Segmentation Algorithm

The Algorithm 1 illustrates the segmentation process, use of decision engine (DE) and multithreading mechanism discussed in Section 3 to separate sensor observations. The algorithm is performed by the ADL threads manager and it is broken down into three stages. The first stage is to iterate over all the active T-box threads \((AT) \) and use the current list of sensor observations in each thread along with the observed sensor event \((e_m) \) being investigated to refine a ADL inferencing result or assume start of new ADL. For simplicity, Algorithm 1 shows only the first iteration \(AT_1 \) is conducted. The line 1 checks if there is \(\neg \exists e_m \) in \(AT_1 \) then perform T-box and A-box reasoning in stage two and three. Otherwise, \(e_m \) is assumed to be start of new ADL activity. Hence, new \(AT_{n+1} \) is created with \(e_m \) in line 12. The T-box reasoning task in line 2 is performed by calling DE by taking three inputs: \(e_m \), set of current sensor events in \(AT_1 \) and \(T = \{ EC, SR, ET \} \) in KB. The new deduced ADL result (Class \(c \)) is evaluated for conflicts and if \(c \subseteq currentAT_1 \) class then \(AT_1 \) is updated with \(c \) along with \(e_m \); see lines 3 and 9. In the second stage, inhabitant’s preferences are checked when conflicts in result is detected. All the A-box threads are checked if \(e_m \) is part of active preference thread then add the event to \(AboxT_a \) thread. Otherwise, any inhabitant (userID) preferences (\(AboxT_a \)) of a given ADL class \(c \) inferred for \(AT_1 \) is queried from the TDB and new A-box threads are created if matched; see lines 4-7. The final stage is where all the housekeeping for the sub-threads and the process of re-evaluating the session timeout window size and timeout cases based on the data of the segmented set of observations. Details of the semantical segmentation mechanism can be found in our previous work [37, 38].

4. System Implementation

An android mobile application and RESTful web service have been used to create a service-oriented architecture (SOA) system. An SOA enables the web service to execute computation tasks such as segmentation and AR on the sen-
Figure 5: Segmentation results for three concurrent ADLs

Sensor events stream and store the results into the Jena Fuseki triplestore using Jena API. The web service exposes these resources to multiple client devices running on independent operating systems using hypertext transfer protocol (HTTP) asynchronously. The web service receives all the sensor events from the sensing environment using wired/wireless connections methods and performs four main tasks: broadcast, store, segment sensor events and performs AR. The sensing environment is capable of collecting ambient data using off-the-shelf binary and multi sensors supported by Securifi Almond router with ZigBee, Z-wave and Wi-Fi communication protocol. In addition, dense sensing is supported by miniature Internet-of-Things (IoT) boards that are based on Arduino microcontroller with radio frequency (RF) and Wi-Fi capabilities to transmit and collect analogue/digital sensor data; more details in . The sensor observations and the results from segmentation and AR are broadcasted independently using server-sent (SSE) protocol and stored in the Apache Jena TDB and exposed using Fuseki server. Multithreading concepts have been employed to segment each ADL into a thread described in Section 4.2. A single ADL thread runs the T-Box reasoning and one or more A-Box thread(s).
Android application continuously captures and presents the information to the inhabitant. Fig. 5 shows a snapshot of how concurrent actions of three activities are separated into different threads and presented on the Android application. Details of the SOA implementation and multithreading concept can be found in previous studies [39, 40].

4.1. Ontological Modelling

The generic knowledge for segmentation is represented using semantic web framework. This framework provides web ontology language OWL to formally express the complex knowledge into classes, relationships (object & data properties) and data (individuals) [41]. In addition, common vocabularies are used to represent the KB and encourage sharing across applications to create an ever-growing, human and machine-readable web of knowledge. There are a number of automatic reasoning tools available to read this KB to identify inexplicit facts based on relationship definition and the selection of a reasoner is elaborated in Section 4.3. The main goal of the ontological model is to express what, where and how the actions are required in order to satisfy a given ADL. For this, EC, SR, and Pref are modelled in three phases using ontology editor tool named Protégé [42]. Initially, EC concepts such as everyday objects, person, sensor characteristics and location were modelled as classes. Fig. 6 illustrates the fragments of EC classes and their subclasses.

In the second phase, the EC classes are used to define SR between ADL classes and describe their actions iteratively using object properties. Fig. 7 partially describes the MakeTea ADL in Protégé. The MakeTea ADL class

Figure 6: Conceptualising environmental context (EC) into Classes: a) Everyday objects (Obj), b) Sensor characteristics (So), c) Person (Xn), d) Location (Lm)
inherit the properties described from super-classes and uses rdfs:subclassOf object property to define actions or the context to carry out the activity. The actions properties and the classes of everyday objects for the MakeTea ADL are described using object properties hasAdding, hasContainer, hasHeatingAppliances, hasHotMealMaterial and so on. These object properties can have characteristics and relationships between everyday objects classes and the ADLs. For instance, hasHotDrinkType object property has a domain of MakeHotDrink ADL class and HotDrinkType material as range property. This means that any everyday object that is a subclass of HotDrinkType is part of the actions defined for MakeHotDrink ADL class or its subclasses. These object properties are used to add further restrictions such as universal and existential quantification (\(\forall, \exists\)) using some and only, logical operations such as not, and, or (\(\neg, \land, \lor\)), and cardinality restrictions (\(\leq, \geq, \equiv\)). Other common operators are also available and can be used to increase the expressivity of the ADL model in terms of class, relationships and data. Similarly, the other 12 subclasses of MakeDrink and MakeMeal ADL classes are also described with relevant relationships. As multiple relationships with ADLs and everyday objects are created, the observed data
(defined as individuals) with a set of assertion statements containing everyday object and object properties are used by the reasoning engine to automatically infer the type of the ADL class the actions in the individual belongs to.

Finally, the inhabitant specific preferences (A-Box) are captured by creating individuals with a direct relationship with instances of sensors in order to avoid the inconsistency in ontology description for generic knowledge. In the

Figure 8: Inconsistency on hasAdding object property due the restriction applied to MakeTea ADL class.

Figure 9: Inhabitant preferences as individuals with a list of sensors
generic knowledge, not all adding (ingredient) for MakeTea ADL are defined and ingredients such as FreshGinger and CinnamonSticks are subjective to the individual. Hence, forcefully adding ingredients in an instance that is the type of MakeTea ADL will result in the inconsistent ontology as highlighted by the explanation window in Fig. 8. Therefore, instances of preferences are associated with the inhabitant and to a given ADL class which has a list of sensors that are attached to the everyday objects and other attributes. Fig. 9 presents an example of three inhabitant preferences. The top section presents individual named, Patient1_Preferences_IndianTea, which has a type of Preference class for MakeTea ADL class along with a list of sensors using hasSensor object properties and data properties to describe other attributes such as preference name and creation timestamp. Similarly, other preferences are shown in the middle and bottom of the figure to describe MakeToast and MakeBakedBeans preference.

Another method is available to layer the inhabitant specific and generic ADL ontology descriptions along with SWRL rules. This can be achieved by using the OWL API and Jena API to create and manipulate the model once generic and inhabitant specific models are combined, and rules are loaded into the memory. The reasoning can be performed using the Pellet reasoner and JESS rule engine after combining the generic and inhabitant specific ontology that is managed dynamically. However, the main limitation of this method is that the changes made to the inhabitant specific ontologies will need to be tracked along with the mechanism to resolve any conflicts in the knowledge that may arise. In addition, inhabitant specific reasoner will need to be created and maintained at run-time. Hence, the amount of in-memory space, number of processing cores and computation power required can grow exponentially. This can potentially create high latency in segmenting individual sensor events and undermine the scalability of the approach. Therefore, the first method is selected as it is lightweight, and no inhabitant specific reasoner is required to be running. The SPARQL Inferencing Notation (SPIN) rules or just a SPARQL query language can be executed on the triplestore to retrieve multiple inhabitant’s
preferences for a given ADL class simultaneously. Therefore, this method is considered appropriate during the segmentation phase as the inhabitant’s preferences can be scalable and has lower latency in terms of query time and there are no additional overheads for running multiple reasoners per inhabitant.

4.2. Multithread Segmentation Process

The multithreaded segmentation processes are depicted in Fig. 10 where actions for *MakeTea* and *MakeToast* ADLs are performed concurrently. The generic and preferred actions are observed at a given time \(t_n \). The T-box activity thread \(AT_1 \) is initially created when the *cupObj* sensor is activated at \(t_1 \). The \(AT_1 \) continuously stores the events into the thread if the decision engine infers an association with generic ADL class in the ontological model or personalised preference(s). The object attached to the *cupObj* sensor is queried from the triplestore, added to new individual and incremental T-box reasoning is conducted. The T-box reasoning result indicates that the object is related to *ADLActivity* class with no conflicts with the model, hence the A-box reasoning is not required to be executed. Next, the sensor event at \(t_2 \) is received and \(AT_1 \) performs T-box reasoning with observed sensor *fridgeObj* along with previous sensor(s), in this case, *cupObj*. The decision engine returned a new result, *KitchenADL* class and it was compared against the current *ADLActivity* class for equivalent or subsuming class. In this case, the subsuming condition is satisfied and stores the *cupObj* and *fridgeObj* sensor events in the \(AT_1 \).

Similarly, *milkObj*, *kettleObj* and *indianTeaObj* sensor events are processed by \(AT_1 \) where the ADL classes are incrementally classified, and the sensor events are stored in the thread. Since, the *freshGingerObj* sensor event is not described as part of a set of adding in the generic *MakeTea* ADL description, the decision engine returns with traceable conflicts. The decision engine then performs A-box reasoning to find any inhabitant’s preferences related to *MakeTea* ADL containing *freshGingerObj*. Multiple preferences could be returned, in this case, only one preference named, *Patient1_Pref_IndianTea* \((P_1) \) is returned as a result of SPARQL query. A single A-box sub-thread \(APT_1 \) is created with other
missing sensors and other relevant information from the preference into the thread. The APT1 thread then inspects the incoming sensor events and updates the missing and matched sensors list independently. AT_1 thread and the sub-thread(s) for A-box reasoning can continue inspecting unfolding events in the data stream until the completion criteria are satisfied i.e. having no child ADL class and missing sensors in A-box threads or a dynamic timeout mechanism for the ADL. The completion/timeout criteria for the ADL will be inspected in future work.

The next set of actions for $MakeToast$ ADL are observed between $t_8 - t_{14}$ and inspected by AT_1 but only one shared $fridgeObj$ event is stored. The ADL manager running in parallel inspects the sensor events in the queue and detects $toastObj$ is not part of the $MakeTea$ ADL class in AT_1 and APT_1 threads. Therefore, another T-box activity thread (AT_2) is created $MakeToast$ ADL as depicted at the bottom-right of Fig. 10. The same process is described for AT_1 is executed for the AT_2 thread to capture events from $t_{10} - t_{15}$ to AT_2 thread with one conflicting $mozzarellaCheeseObj$ observation. Therefore, the APT_2 thread is created when identified by decision engine that $mozzarellaCheeseObj$...
is part \textit{Patient1_Pref_CheeseyToast} \((P_2)\) to perform the \textit{MakeToast} activity.

4.3. Reasoner and Supporting Tools

A reasoner is a software tool developed to perform A-box and T-box reasoning by the decision engine to perform tasks such as consistency check of the ontological model and derive new facts from the KB dataset. There are a number of reasoners developed over the years and most of them support first-order predicate logic \cite{34} reasoning or procedural reasoning (perform forward and backward chaining). Some of the key requirements for selecting a reasoner are that it supports the incremental classification for only the part of ontology that was affected by the changes \cite{15}, full description logics (DLs) family support for higher expressivity, rules support, justification of conflicts, low latency in classification and support both T-Box and A-Box reasoning. Studies in \cite{34,35} describe a number of popular reasoners using large ontologies, compare against their key features and categorise according to their characteristics. The incremental Pellet reasoner has been selected as it supports most requirements stated above along with being open source and supported by a number of application programming interfaces (APIs) and ontology editors such as Protégé and NeOn toolkit. OWL API and Jena API both support the Pellet reasoner to programmatically perform reasoning, querying and KB manipulation. Jena API further supports other reasoners to be integrated easily. Although, the pellet reasoner takes up higher heap space and has higher delay time than FaCT+ when performing concept satisfiability checking after classification but outperforms in subsumption query \cite{34}.

5. Evaluation

5.1. Experiment Design

The actions for three ADLs are scripted in no particular order to perform with only generic actions and another with the inhabitant’s preferences; namely, \textit{MakeTea}, \textit{MakeToast} and \textit{MakeBakedBeans}. The relevant actions for
the generic (G) ADL and some inhabitant’s preferences (P) are described in TABLE 1. These three ADLs are first tested individually in random order and then combined to create composite activity scenario; incremental, concurrent and parallel; see TABLE 2. A total of 30 activity scenarios (6 for single and 24 for composite ADLs for both G, and G+P actions) were created for the experiment and a thread simulated each scenario with sensor events occurring at 10ms interval. The sensor events contained a timestamp, name, sensor type, and binary data. The degree of accuracy to recognise an activity scenario is calculated in percentage by matching and tallying actual sensors events segmented correctly and it divided by the total number of sensors events activated for each ADL. The average classification time is calculated by taking sensor observation segmented time by the reasoner minus the sensor observation time recorded for each activity scenario. The unexpected sensor observations within the activity scenario are omitted and recorded separately when calculating the accuracy and average classification time for the activity. In addition, a number of duplicate activity threads created in the activity scenario are also recorded to see the effect on the overall classification times. The Samsung S6 edge smartphone running 6.0.1 Android OS was used and the web service was deployed on the HP EliteBook Folio 1040 G2 with the i7 2.60GHz processor, 2 cores, 4 logical processors and 8GB RAM. The binary sensor events is currently simulated due to a limited number of sensors and time.

Table 1: Single Activity Sequences Example

<table>
<thead>
<tr>
<th>Activity Type</th>
<th>Related actions/ sensors attached to objects</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make G</td>
<td>KettleObj, Cup1Obj, TeaJarObj, IndianTeaObj, KitchenSinkTap1Obj</td>
<td>9</td>
</tr>
<tr>
<td>Tea P</td>
<td>SugarJarObj, FridgeObj, Milk1Obj, Spoon2Obj</td>
<td>4</td>
</tr>
<tr>
<td>Make G</td>
<td>Spoon1Obj, HenzBeansCan1Obj, HenzBeansObj, CanOpener1Obj</td>
<td>8</td>
</tr>
<tr>
<td>Baked G</td>
<td>MicrowaveBowl1Obj, MicrowaveObj, Plate1Obj, EatingKnifeObj</td>
<td>2</td>
</tr>
<tr>
<td>Beans P</td>
<td>[SaltObj]</td>
<td>1</td>
</tr>
<tr>
<td>Make G</td>
<td>Plate1Obj, BreadPacket1Obj, BreadSlice1Obj, ToasterObj, FridgeObj</td>
<td>7</td>
</tr>
<tr>
<td>Toast G</td>
<td>MargarineObj, EatingKnifeObj</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: Generic (G) / Preference (P) actions, [SensorName] - User preference item, # - number of sensors.
The average segmentation time taken per sensor event for single activity is 3971ms in contrast to 62183ms for composite ADL scenarios as shown in TABLE 3 and TABLE 4. The result in TABLE 3 shows that all the sensor events for a single activity case scenario were adequately placed in the correct thread with 100% accuracy. Only the MakeTea activity case scenario created additional threads with more than double the average time when processing 9 generic actions and 4 preferred actions. On the other hand, TABLE 4 shows 20 out of 24 activities performed in a composite manner or 572 out of 585 sensor events were added to the relevant thread, giving 97.8% accuracy. However,
Table 4: Multiple activities performed in a composite manner

<table>
<thead>
<tr>
<th>Activity Type</th>
<th>Activity Comb.</th>
<th>All actions in the thread(s)?</th>
<th>Excess thread(s)*</th>
<th>Unexp. actions in the thread(s)*</th>
<th>Total Avg. time* (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC1</td>
<td>G</td>
<td>✓</td>
<td>1</td>
<td>1</td>
<td>36390.04</td>
</tr>
<tr>
<td>AC2</td>
<td>G</td>
<td>✓</td>
<td>1</td>
<td>4</td>
<td>41543.17</td>
</tr>
<tr>
<td>AC3</td>
<td>G</td>
<td>✓</td>
<td>1</td>
<td>1</td>
<td>30354.98</td>
</tr>
<tr>
<td>AC4</td>
<td>G</td>
<td>×</td>
<td>15/24</td>
<td>3</td>
<td>3619.25</td>
</tr>
<tr>
<td>AC5</td>
<td>G</td>
<td>✓</td>
<td>24</td>
<td>1</td>
<td>60742.14</td>
</tr>
<tr>
<td>AC6</td>
<td>G</td>
<td>✓</td>
<td>24</td>
<td>1</td>
<td>72690.97</td>
</tr>
<tr>
<td>AC7</td>
<td>G</td>
<td>✓</td>
<td>22</td>
<td>1</td>
<td>54948.21</td>
</tr>
<tr>
<td>AC8</td>
<td>G</td>
<td>✓</td>
<td>22</td>
<td>0</td>
<td>21905.05</td>
</tr>
<tr>
<td>AC9</td>
<td>G</td>
<td>✓</td>
<td>18</td>
<td>0</td>
<td>12561.28</td>
</tr>
<tr>
<td>AC10</td>
<td>G</td>
<td>×</td>
<td>31</td>
<td>3</td>
<td>99807.19</td>
</tr>
<tr>
<td>AC11</td>
<td>G</td>
<td>×</td>
<td>30/31</td>
<td>1</td>
<td>62616.20</td>
</tr>
<tr>
<td>AC12</td>
<td>G</td>
<td>×</td>
<td>31</td>
<td>1</td>
<td>87298.32</td>
</tr>
<tr>
<td>Con.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC13</td>
<td>G</td>
<td>✓</td>
<td>22</td>
<td>1</td>
<td>56752.83</td>
</tr>
<tr>
<td>AC14</td>
<td>G</td>
<td>✓</td>
<td>22</td>
<td>1</td>
<td>23993.51</td>
</tr>
<tr>
<td>AC15</td>
<td>G</td>
<td>✓</td>
<td>18</td>
<td>2</td>
<td>64074.61</td>
</tr>
<tr>
<td>AC16</td>
<td>G</td>
<td>✓</td>
<td>31</td>
<td>1</td>
<td>70289.79</td>
</tr>
<tr>
<td>AC17</td>
<td>G</td>
<td>✓</td>
<td>31</td>
<td>2</td>
<td>131784.92</td>
</tr>
<tr>
<td>AC18</td>
<td>G</td>
<td>✓</td>
<td>31</td>
<td>2</td>
<td>181894.97</td>
</tr>
<tr>
<td>Par.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC19</td>
<td>G</td>
<td>×</td>
<td>21/22</td>
<td>2</td>
<td>43055.55</td>
</tr>
<tr>
<td>AC20</td>
<td>G</td>
<td>✓</td>
<td>22</td>
<td>0</td>
<td>8309.10</td>
</tr>
<tr>
<td>AC21</td>
<td>G</td>
<td>✓</td>
<td>16/18</td>
<td>1</td>
<td>35944.94</td>
</tr>
<tr>
<td>AC22</td>
<td>G</td>
<td>✓</td>
<td>31</td>
<td>1</td>
<td>63773.04</td>
</tr>
<tr>
<td>AC23</td>
<td>G</td>
<td>✓</td>
<td>31</td>
<td>1</td>
<td>77358.87</td>
</tr>
<tr>
<td>AC24</td>
<td>G</td>
<td>✓</td>
<td>31</td>
<td>1</td>
<td>59173.90</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>62182.73(avg.)</td>
</tr>
</tbody>
</table>

Note: * excludes additional thread(s) actions, + including excess threads

the segmented activity threads captured a total of 71 additional unexpected sensor events in the segmented threads which are not necessarily incorrect, i.e., multiple spoon objects or heating/cooling appliances when performing multiple activities interweavingly. Furthermore, 29 additional threads were created and failed to classify any ongoing activity.

5.3. Discussion

Although, previous studies use varying ADL models, datasets, sensors and platforms, use scenarios, and etc., the key features and final outcomes for the recent KD studies presented in Section 2 is discussed instead. The accuracy of single and composite activity segmentation for evidential theory-based approach [32] is 81.8% and 76.2% on average and ontology and temporal [28] achieved 100% and 88.3%, respectively. Therefore, there is a significant evidence that the proposed approach improves the accuracy of sensor segmentation with 100%
and 97.8%, respectively. In addition, user-preferences are taken into consideration by adopting basic query-based approach and automatic Pellet reasoner for generic KB reasoning compared to their counterparts which adapt solely query-based approach inheriting classical multi-query optimisation problem in [26] and [30]. Nevertheless, one of the benefits for adapting multi-query approach is that higher performance and scalability can be achieved, however, suffer from the expressivity capabilities of KB due to explicit query development/maintenance efforts and the ability to use automatic reasoners.

The proposed method in this paper seeks to strike a balance between automation by taking advantage of expensive ontology with incremental Pellet reasoning feature and performance of query-based approach to manage the changing user-preferences. The average segmentation time information is not available in the presented KB studies; however, the proposed approaches observe 3971ms and 62183ms with sensors events activated at the 10s interval for simple and composite activities scenarios. These results are still not suitable for the real-time system at this stage. However, the optimisation opportunities such as multi-thread safe reasoning [46], ADL threads management, parallel programming, partitioning workload to graphics processing units (GPUs) [47], and using a

<table>
<thead>
<tr>
<th>Studies/Features</th>
<th>C-SPARQL [24], 2010</th>
<th>Evidential theory Onto. & temporal [30], 2013</th>
<th>AALISABETH [28], 2015</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge expressivity</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>SPARQL query support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Automatic reasoner support</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Direct stream inspection</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RDF stored</td>
<td>Yes</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>User prefs. support</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sliding window support</td>
<td>No (Fixed size)</td>
<td>Yes</td>
<td>Yes</td>
<td>No (Future work)</td>
</tr>
<tr>
<td>Potential scalability issue</td>
<td>Low</td>
<td>Med. – High</td>
<td>Med.</td>
<td>Low</td>
</tr>
<tr>
<td>Accuracy: S; C (%)</td>
<td>81.8; 76.2</td>
<td>100; 88.3</td>
<td>-</td>
<td>100; 97.8</td>
</tr>
<tr>
<td>Average time: S; C (ms)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3971; 62183</td>
</tr>
</tbody>
</table>

Table 5: Summary of recent KB approaches

Note: S: simple activity, C: composite activity
machine with higher number of cores (i.e., quad-core, octa-core CPU or higher) to support more concurrent or parallel threads execution at same time remain an open challenge. TABLE 5 presents a summary of the key components of the recent KB studies presented in Section 2 against the proposed semantical segmentation approach in this paper.

6. Conclusion and Future Work

A semantical segmentation approach is proposed which combines generic knowledge conceptualised as an ontological model and inhabitant specific preferences to conduct a specific ADL as asserted individual. Upon sensor activation, the event is inspected by one or more active ADL threads running in parallel. Each ADL thread relies on a two-stage decision engine to find any association with observed sensor event. The decision engine conducts T-box reasoning with generic KB in the first stage and A-box reasoning with observed sensor event and inhabitant specific preferences by querying the triplestore in the second stage. The second stage of decision engine is only invoked when the use of entity on which observed sensor is attached to has a contradiction or not been explicitly specified in generic ADL description. The ADL thread discards the observed event when decision engine has failed to find any relationship. When the whole set of active ADL threads fail to find any relevance for a given sensor event, a new ADL thread is created. The approach leverages between the incremental Pellet reasoner, OWL & Jena API, and the notion of multithreading. The proposed method was implemented and tested against 30 test scenarios. The results indicate an improvement in segmentation accuracy compared to the counterpart studies with 100% and 88.3% for single and composite ADL scenarios with an average time of 3971ms and 62183ms. The main bottlenecks for high processing time are the synchronised incremental reasoning and duplicate ADL threads creation which ultimately created additional reasoning tasks and slowed down the overall process on the machine which was limited to two cores. A future study is proposed to address above shortfalls by adapting
Fork/Join parallelism framework to efficiently split and manage tasks over multiple cores machine and utilise graphical processing unit (GPU) to increase performance. Moreover, investigating in methods for making incremental Pellet reasoner thread-safe and allow parallel processing can encourage more real-time scalable solutions to emerge. Finally, the study will focus on comparing other segmentation approaches, developing accurate fine-grained AR and learning algorithms with the support of the rule and temporal reasoning.

References

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-84930640821&partnerID=tZOtx3y1
URL http://doi.acm.org/10.1145/2539150.2539187

URL http://www.tech.dmu.ac.uk/~limingchen/PMC-S-11-00304.pdf

[31] U. Naeem, Activities of daily life recognition using process representation

URL http://doi.ieeecomputersociety.org/10.1109/SOSE.2016.41

URL http://dx.doi.org/10.1016/j.pmcj.2011.02.001

[42] S. University, Protégé
URL https://protege.stanford.edu/

URL https://www.w3.org/Submission/spin-overview/

[46] Y. Ren, J. Z. Pan, I. Guclu, M. Kollingbaum, A combined approach to incremental reasoning for EL ontologies, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

URL http://www.oracle.com/technetwork/articles/java/fork-join-422606.html