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Abstract

Traditional dynamic multiobjective evolutionary algorithms usually imitate the

evolution of nature, maintaining diversity of population through different strate-

gies and making the population track the Pareto optimal solution set efficiently

after the environmental change. However, these algorithms neglect the role of

the dynamic environment in evolution, leading to the lacking of active guided

search. In this paper, a dynamic multiobjective evolutionary algorithm based on

a dynamic evolutionary environment model is proposed (DEE-DMOEA). When

the environment has not changed, this algorithm makes use of the evolutionary

environment to record the knowledge and information generated in evolution,

and in turn, the knowledge and information guide the search. When a change

is detected, the algorithm helps the population adapt to the new environment

through building a dynamic evolutionary environment model, which enhances

the diversity of the population by the guided method, and makes the environ-

ment and population evolve simultaneously. In addition, an implementation of

the algorithm about the dynamic evolutionary environment model is introduced

in this paper. The environment area and the unit area are employed to express
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the evolutionary environment. Furthermore, the strategies of constraint, facili-

tation and guidance for the evolution are proposed. Compared with three other

state-of-the-art strategies on a series of test problems with linear or nonlinear

correlation between design variables, the algorithm has shown its effectiveness

for dealing with the dynamic multiobjective problems.

Keywords: Dynamic multiobjective optmization, evolutionary algorithms,

evolutionary environment, dynamic evolutionary environment model

1. Introduction

Many real-world problems are dynamic multiobjective optimization prob-

lems (DMOPs), with conflicts among multiple objectives as well as objective

functions that change over time [1]. Tracking the Pareto optimal solution set

after a change is an important and challenging issue. On these issues, the

researched objectives often change intricately with time. The goal of the tra-

ditional evolutionary algorithms is to make the population gradually converge

to get a satisfactory solution set, but this makes the population lose diversity.

Especially, in the later stages of the evolution, the population will gradually lose

the ability to adapt to the environmental changes, which is a challenge of the

traditional evolutionary algorithms in the dynamic environment [2, 3, 24, 4, 5].

In order to track the optimal solution set in a timely manner after a change,

researchers need to make some adjustments on the traditional static multiobjec-

tive algorithms [6, 7, 8, 9], so that they can quickly respond to the environmental

changes.

In recent years, researchers have designed many new ways to solve DMOPs

on the basis of static algorithms [10, 11, 13, 14, 16, 17, 18, 19, 20, 21], such as

random initialization [12, 25, 26, 18, 17], hyper mutation [25, 22, 15, 33], mem-

ory [25, 26, 29, 30, 36, 23, 41], and prediction [31, 32, 33, 34, 35, 36, 42, 48, 49].

These strategies have been proven effective for solving DMOPs; however, they

are defective in the following ways. Firstly, random initialization, hyper muta-

tion and dynamic migration strategies are all a blind way to enhance population
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diversity without a right guidance, and the performance of convergence is un-

satisfactory when dealing with complex DMOPs. Secondly, memory strategy

reuses the optimal solutions which are previously searched in the previous time

to rapidly respond to changes in the new environment. This strategy can achieve

good results for periodic problems. However, for non-periodic problems or in the

first cycle of the changing environment, population is still in the process of blind

evolution. Thus, the algorithm is difficult to obtain a good convergence. Lastly,

methods that are based on prediction generate a new optimal solution set by

the prediction model for the evolution of the population, and help the algorith-

m to respond quickly to new changes. However, obtaining accurate predictions

remains a primary difficulty. Thus, designing a more accurate prediction model

is still a focus of the present research.

To solve these problems, on the premise of less history information and

utilizing the characteristics of the evolutionary environment itself, the paper

proposes a dynamic multiobjective evolutionary algorithm based on a dynamic

environment evolutionary model, referred to as DEE-DMOEA. Current dynamic

multiobjective optimization algorithms do not consider the role of the dynamic

environment for the evolutionary population. Actually, the effect of the environ-

ment on evolutionary individuals is very important, for individuals must survive

and evolve in a specific environment. The wonderful interaction between the

natural environment and the biology that makes biomass have such a present

perfect structure. Therefore, how to research from the perspective of the dy-

namic environment, using the dynamic environmental knowledge to guide the

evolution of population in the new environment to accelerate convergence of the

population is the research focus in this paper.

The rest of the paper is organized as follows. Section 2 provides important

terminology. Section 3 describes the dynamic environment evolutionary model.

Section 4 describes the implementation of the evolutionary model. Section 5

introduces the test problems and evaluation metrics. Section 6 gives the ex-

perimental results and analysis. Section 7 provides the conclusions and future

work.
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2. Background

A minimization problem is considered here without loss of generality. The

dynamic multiobjective optimization problem [1] can be described as:






min
xǫΩ

F (x, t) = (f1 (x, t) , f2 (x, t) , . . . , fm (x, t))
T

s.t. gi(x, t) ≤ 0 i = 1, 2, ..., p; hj = 0 j = 1, 2, ..., q

where t is the time variable and x = (x1, x2, . . . , xn) is the n-dimensional decision

vector bounded by the decision space Ω. F = (f1, f2, . . . , fm) presents the set

of m objectives to be minimized and the functions of gi ≤ 0 i = 1, 2, . . . , p and

hj = 0 j = 1, 2, . . . , q present the set of inequality and equality constraints.

Definition 1 (Pareto Dominance). p and q are any two individuals in the

population; p is said to dominate q, denoted by f (p) ≺ f (q) iff fi (p) ≤ fi (q)

∀i = {1, 2, . . . , m} and fj (p) < fj (q)∃j ∈ {1, 2, . . . , m}.

Definition 2 (Pareto Optimal Set(PS)). x is the decision variable; Ω is

the decision space; F is the objective function; thus, the PS [7] is the set of all

non-dominated solutions and is defined mathematically as:

P S := {x ∈ Ω |6 ∃x⋆ ∈ Ω, F (x⋆) ≺ F (x)}

Definition 3 (Pareto Optimal Front(PF)). x is the decision variable; F is

the objective function; thus, the PF [7] is the set of non-dominated solutions

with respect to the objective space and is defined mathematically as:

P F := {y = F (x) | x ∈ P S}

3. Dynamic Environment Evolutionary Model

In ecology, environment refers to external matters such as the surrounding

ecosystem which affects biological communities. In our dynamic environment

evolutionary model, the environment refers to a group of entities which can guide

and promote the evolution of the population. Especially, after environmental
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changes, it can guide the evolution and convergence of the population in the

new environment.

An evolutionary population must survive and evolve in a specific environ-

ment. The environment plays constraint, facilitating and guiding roles for the

evolution of the population, and these three environmental roles are completely

different. Constraint is mainly used to ensure the legitimacy of individuals; fa-

cilitating is mainly used to enhance the efficiency of the evolution and improve

the distribution of evolutionary population. Guiding is mainly used to help

the population adapt to the new environment. At the same time, the evolu-

tionary population is counteractive to the evolutionary environment, which is

mainly shown in the impact on the attributes of the evolutionary environment,

such as the changes of the current evolutionary state and the update of the

environmental knowledge.

In a dynamic environment, how to maintain the diversity of the popula-

tion after an environmental change is the key to solve DMOPs. When the

environment changes, environmental information and knowledge make a differ-

ence. Making full use of this information in a dynamic environment to help the

population adapt to the new environment plays an important role for solving

DMOPs.

Fig. 1 shows a general framework of a dynamic evolutionary environment

model. A dynamic environment model consists of two different kinds of en-

vironment before and after the environmental change. Environment elements

include environmental knowledge, environmental evaluation, environmental con-

straint before change and environmental regulation after change. Among them,

environmental knowledge can be divided into static knowledge and dynamic

knowledge. Static knowledge is the preset environmental attributes which main-

tain constant values in the process of evolution, such as environmental capacity

and dimensions. Dynamic knowledge is the environmental attributes which are

affected by population in the process of environmental change, such as the con-

gestion degree, the domain to be oriented, direction of environmental change

and newly generated individuals for guiding evolution. the environmental eval-
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uation mechanism evaluates the living conditions of the population or individ-

uals according to environmental knowledge, such as individual location in the

environment and the entire population distribution.

Environmental constraint before change mainly includes two parts: 1) the

satisfaction constraint of the expected solution set, and 2) the distribution con-

straint of the expected solution set. Environmental constraint mostly reflects

on the guidance for the population, that is to say, it can achieve the evolution

in the environment by environmental constraint.

Environmental regulation after change means that individuals need to make

the corresponding change in order to adapt to the new environment. There are

two different kinds of environment exchange information to facilitate and guide

the evolution of the population. In return, the population will send the feedback

information which is generated in the process of evolution to the environment,

updating the environmental knowledge and achieving co-evolution.

The dynamic environmental facilitating and guiding mechanism for the pop-

ulation is the core of DEE-DMOEA, which determines the evolutionary direc-

tion of the population and plays a decisive motivational role in the evolution.

The dynamic environmental facilitating mechanism indicates that, when the

environment does not change, on the one hand, it promotes the individual ac-

celerated evolution in compliance with environmental satisfaction constraints.

On the other hand, it balances the density of population distribution and ex-

pands the range of population distribution in compliance with the environmental

distribution constraints. The dynamic environmental guiding mechanism aims

to enhance population diversity by guided method according to environmental

regulation after change, help population adapt to the new environment, and

accelerate the algorithm to quickly track the new Pareto optimal solution set.

4. Implementation of The Evolutionary Model

Each individual in a dynamic environment has a living space. Here we

use a mechanism which is similar to the grid, referred to as the environment
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Figure 1: A general framework of dynamic environment evolutionary model.

domain, to store the individuals in the dynamic environment. The environment

domain consists of many identical grids, which are called the unit domains. The

dimensions of the environment domain and unit domains are the same as the

objective dimensions. The position of an individual in the environment domain

will change accordingly when the environment changes. Therefore, in a dynamic

environment, as shown in Fig. 2, when the environment does not change, the

range of environment domain and the size of unit domain are determined by the

location and distribution of population in the environment; the environment

domain will constantly adjust with the evolution of the population. When

the environment changes, the range of environment domain and the size of unit

domain are co-determined by the different distributions of the population before

and after the environmental change.

Bottom and top boundaries of each dimension in the environment domain

are calculated as follows:

lbi = min(Pi)− (max(Pi)− min(Pi)/(2× num))

ubi = max(Pi) + (max(Pi)− min(Pi)/(2× num))
(1)

where num is the number of unit domains on each dimension in the objective

space. The higher the objective dimension, the smaller the value of num. For

example, num can be set to 40 for two objectives and can be set to 10 for three
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Figure 2: Two different types of environment.

min(pi) max(pi)

lbilbi ubi

num = 5

Figure 3: The environment domain set on i-dimensional objective.

objectives. When the environment does not change, min(Pi) and max(Pi)

denote the minimum and maximum values of the ith objective of population

P . While a change is detected, min(Pi) and max(Pi) denote the minimum and

maximum values of the ith objective of population P in the two different kinds

of environments before and after change, namely min(P.oldFi, P.newFi) and

max(P.oldFi, P.newFi). As shown in Fig. 3, the size of unit domain on the ith

objective is area sizei = (ubi − lbi) /num.

In a dynamic environment, when the environment does not change, each

individual belongs to a specific unit domain. We denote indiv.area as the unit

domain to which individual indiv belongs. According to the boundary of the

environment domain and the size of unit domain, the unit domain position (do-

main coordinate) of each individual can be determined. The domain coordinate
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of indiv.area on the i-th objective dimension can be calculated as Eq. (2).

indiv.areai = ⌊(indiv.Fi − lbi) /area sizei⌋ (2)

where indiv.Fi is the i-th objective value of individual indiv. In Eq. (1) of

calculating lbi, min(Pi) and max(Pi) denote the minimum and maximum values

of the ith objective of population P .

While the environment changes, each individual may belong to two different

unit domains before and after the environmental change, at this time the en-

vironment domain will be reconstructed. Therefore, we denote indiv.old area

as the unit domain to which individual indiv belongs before the environmental

change and indiv.new area as the unit domain to which individual indiv be-

longs after the environmental change. The domain coordinates of indiv.old area

and indiv.new area on the i-th objective can be calculated as follows:

indiv.old areai = ⌊(indiv.oldFi − lbi) /area sizei⌋

indiv.new areai = ⌊(indiv.newFi − lbi) /area sizei⌋
(3)

where indiv.oldFi and indiv.newFi are respectively the i-th objective values

before and after an environmental change. In Eq. (1) of calculating lbi, min(Pi)

and max(Pi) denote the minimum and maximum values of the i-th objective

of population P in the two different kinds of environments before and after a

change.

The environment domain and unit domain have been set, then the various

elements of composing dynamic environment and their implementation will be

introduced.

4.1. Environmental Knowledge

Environmental knowledge is an important part of the environment, which de-

notes the information recorded in the current dynamic environment. In our ap-

proach, environmental knowledge is divided into two types: the environment do-

main knowledge and unit domain knowledge. The environment domain knowl-

edge is divided into static and dynamic environment domain knowledge. Static
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environment domain knowledge includes environmental capacity, the number of

unit domains on each dimension and other preset environmental attributes. Dy-

namic environment domain knowledge includes the bottom boundary and top

boundary of the environment domain on each dimension, the size of unit do-

main, the number of unit domains containing any individuals, the domain to be

oriented, the direction of environmental change, the newly generated individuals

for guiding the evolution, and other environmental attributes which are affected

by the population. The new individuals are a series of re-initialized individuals

to help the population adapt to the new environment after an environmental

change and accelerate the convergence of the population and individuals, which

will be described in detail in Section 4.3.

Unit domain knowledge is dynamic knowledge, which includes the number

of individuals in each unit domain, a representative individual and the non-

dominated unit domains. Representative individual is the optimal individual in

a unit domain. Here, we set the individual with the nearest Euclidean distance

to the origin of unit domain as the representative individual. The origin of the

unit domain is the minimum on each dimension.

4.2. Environmental Constraint

When the environment does not change, survival and evolution of each in-

dividual in the environment domain are required to meet the satisfaction con-

straint; not all offspring generated by evolution can enter the environment do-

main. Here, we stipulate that the individual in the environment domain must

satisfy the following two constraints:

1) Individuals in each unit domain of the environment domain are mutually

non-dominated.

2) Unit domains in the environment domain must be mutually domain strong

non-dominated. The unit domain here refers to the unit domain containing

any individual.
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3) The strong dominance relation is stricter than the Pareto dominance. The

domain strong dominance relation is defined as follows.

Definition 4 (Domain strong dominance). A and B are any two unit do-

mains in the environment domain; A is said to domain strong dominate B,

denoted by A ≺≺area B if A.areai < B.areai∀i = {1, 2, . . . , r}. Where r is the

dimensions of the unit domain.

Similarly, the domain dominance can be defined as follows:

Definition 5 (Domain dominance). C and D are any two unit domains in

the environment domain, C is said to domain dominate D, denoted by C ≺area

D iff C.areai ≤ D.areai∀i = {1, 2, . . . , r} and C.areaj < D.areaj ∃j ∈

{1, 2, . . . , r}.

4.3. Environmental Evaluation

In a dynamic evolutionary environment model, the evaluation mechanism

needs to evaluate not only the fitness of the population, but also the living con-

ditions of the population and individuals according to environmental knowledge,

and prepares for guiding evolution. The evaluation mechanism is divided into

two types, one is evaluation for the individual, and the other is evaluation for

the population.

Evaluation for the individual is to calculate the unit domain coordinates

for each individual when the environment does not change according to Eq. (2),

and to determine the representative individual. While the environment changes,

the evaluation calculates two different unit domain coordinates for each indi-

vidual, and provides feedback to the environment to construct a new dynamic

environment.

Evaluation for the population first evaluates the distribution of the entire

population in the new environment according to the environmental knowledge,

then generates a new series of guide-individuals to prepare for guiding evolution.
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The new guide-individuals are defined by Eq. (4):

inittk = xt
k +

∣∣(Ct
k − Ct−1

k

)
Gaussian

∣∣ , if Ct
k − Ct−1

k > 0

inittk = xt
k −

∣∣(Ct
k − Ct−1

k

)
Gaussian

∣∣ , if Ct
k − Ct−1

k < 0
(4)

where xt
k is the individual at time t; k = 1, 2, ..., n; n is the dimensions of

the decision space. Gaussian is a random number generated from a standard

normal distribution with mean 0 and variance 1, which has been verified in [27]

to be a good strategy to enhance the ability of elaborate search. Ct
k is the center

of non-dominated solutions obtained at time t, which can be defined by Eq. (5):

Ct
k =

1∣∣P t
N−dominance

∣∣
∑

xt
k

xt

k
ǫP t

N−dominance

(5)

where
∣∣P t

N−dominance

∣∣ is the size of non-dominated solutions.

Similarly, the domain coordinates of new guide-individuals are also calculat-

ed.

In this way, we use the possible correlation between environmental changes

to produce a series of guide-individuals. These individuals will be served as

the alternative individuals in the process of environmental facilitating and guid-

ing, to help the population adapt to the new environment and accelerate the

convergence of population to the new PF.

4.4. Environmental Regulation

In a dynamic environment, different problems have different regulations.

The location and distribution of the population in the new environment domain

may not be suitable for its evolution and convergence. Therefore, the popu-

lation needs to make the corresponding change in order to adapt to the new

environment.

As shown in Fig. 4, just like people’s psychological reactions in real life, some

individuals want to return to the past environment and continue to survive and

evolve, considering that the environment before change is more conducive for

evolution. While some individuals do not want to return to the past environ-

ment, at the same time they are also confused about where they should go.
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Current population

Subpopulation1 Subpopulation2 Subpopulation3

Want to go back Without change
Don't want to go

back

Figure 4: The division of population.

There is also a group of individuals who do not want to make any change, they

consider that the current environment is an ideal evolutionary environment.

Therefore, we need to divide the current population into three sub-populations

according to the different behavioral characteristics of individuals when the en-

vironment changes. Meanwhile, in order to maintain the distribution of sub-

populations and avoid crowding the solution set, the three sub-populations need

to be more evenly divided. Sub-populations are divided as follows (illustrated

by the example of two objectives):

The sizes of three sub-populations are respectively set to num sub1, num sub2

and num sub3 (Initially, for two objectives: 30, 40 and 30; for three objectives:

60, 80 and 60).

For the subpopulation2 which is without any change: we gather directly

num sub2 non-dominated individuals whose crowding-distance [44] is the largest

from the original population to subpopulation2.

For the subpopulation1 which wants to go back and the subpopulation3

which does not want to go back: Algorithm 1 gives a detailed procedure of this

strategy, where the domain-adjacent is defined as follows:

Definition 6 (Domain-adjacent). U and V are any two individuals in the
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Algorithm 1 SubpopulationDivision

Require: ND(population without division), q(picked individual)

1: for all q ∈ ND do

2: p:=q->next

3: for all P !=null do

4: flag:=false

5: if p is domain-adjacent with q then

6: for all k ∈ ND do

7: if k.new area = p.new area then

8: swap(p,q->next)

9: flag:=true

10: Break

11: end if

12: end for

13: if flag=false then

14: p:=p->next

15: end if

16: else

17: swap(p,q->next)

18: break

19: end if

20: end for

21: end for

22: Select the top num sub1 individuals in ND as subpopulation1, the rest of

num sub3 individuals as subpopulation3.
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Figure 5: An example about division of the sub-populations.

environment domain; U is domain-adjacent with V , iff |U.new areai − V.new areai| ≤

min diff (i). min diff (i) is the minimum difference on each dimension be-

tween any two unit domain coordinates. The unit domain here refers to the unit

domain containing any individuals.

Fig. 5 is an example about division of the sub-populations. The first in-

dividual A is selected, and then the second individual to compare with A is

selected. The second individual is assumed to be B. Since B is domain-adjacent

with A, and its unit domain does not include multiple individuals Therefore, B

is discarded. Next, select the individual C, and C is not domain-adjacent with

A, so C will be divided into the same sub-population with A and serves as the

next individual for comparison. Similarly, E is not domain-adjacent with C and

is divided into the same sub-population. Despite the fact that F is domain-

adjacent with E, its unit domain includes another individual G, so F will be

divided into the same subpopulation with A, C and E. Thus, the division ends.

A, C, E and F are divided into the same sub-population. B, D, G and H are

divided into another subpopulation.

It is worth noting that environmental regulation in this paper is clearly

different from the random division of sub-populations such as charged PSO

[37]. Environmental regulation considers the characteristics of different sub-

populations to adapt to different environmental changes, and at the same time,
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takes into account the distribution of the solution set, digging and using the

environmental knowledge to guide the evolution.

4.5. Environmental Facilitating Mechanism

When the environment does not change, on the one hand, the environment

facilitating mechanism promotes the individual accelerated evolution in compli-

ance with environmental satisfaction constraints. On the other hand, it balances

the density of population distribution and expands the range of population dis-

tribution in compliance with environmental distribution constraints. First, we

introduce the accelerating action to promote evolution of the population. Classic

multiobjective evolutionary algorithms typically recombine by randomly select-

ing two or more individuals to achieve the evolution of population. However,

this simple random selection will be hindered by the evolution to a certain exten-

t. While two different individuals (especially non-dominated individuals) may

generate far better offspring than parents which combines advantages of both

parents after recombination. In the dynamic environment evolutionary model,

we select more efficient individuals to recombine by giving the unit domain a

relative fitness assignment. Relative to the unit domain Ax1,x2,...,xr
, the relative

fitness of unit domain By1,y2,...,yr
is given as follows:

f (B)A =
r∑

i=1

Φ (xi, yi) (6)

where xi and yi are respectively the ith dimensional domain coordinates, and

the definition of function Φ is given as follows:

Φ (xi, yi) =






1/ (2 + yi − xi) xi ≤ yi

xi − yi xi > yi

(7)

Relative fitness is a relative concept, it does not represent the pros and cons

of units in the environment domain. Relative to the unit domain A, the large

relative fitness of unit domain B just indicates that selecting the individual in

unit domain B and the individual in unit domain A to recombine will generate

more excellent offspring than the parents. For instance, in Fig. 6, relative to the
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Figure 6: An illustration of individuals in the environment in a bi-objective space.

unit domain Area0,2, the relative fitness of domain Area0,4, Area0,3, Area0,1,

Area1,1 and Area3,0 are respectively 3/4, 5/6, 3/2, 4/3 and 11/5. The domain

coordinates of individual A in unit domain Area0,4 is equal to the individual C

on the objective f1, but two units larger on the objective f2. So, it is difficult

to generate a much better individual than C in the process of recombination.

That is to say, the promoting effect of A to C is not obvious. However, the

domain coordinates of individual G or H in unit domain Area3,0 is three units

larger than the individual C on the objective f1, but two units smaller on the

objective f2. So, the generated offspring may inherit the different advantages of

parents, that is to say, the promoting effect of G or H to C is very powerful. For

an individual to be recombined, we first select a unit domain according to the

relative fitness by roulette, and then randomly select an individual within this

unit to recombine with it. Here, we choose the SBX [38] and DE [39] operators

to promote evolution.

Next, we introduce the balancing and expanding action to population distri-

bution. The balancing and expanding action is mainly implemented by domain

orientation. Domain orientation refers to generating new individuals in the do-

main to be oriented, and meet the environmental distribution constraint. Here,

we define the domain to be oriented as follows:
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Definition 7 (The domain to be oriented). Ax1,x2,...,xr
is the unit domain

which has no individual, Ax1,x2,...,xr
is the domain to be oriented iff ∃Ay1,y2,...,yr

=

1Ay1,y2,...,yr
≺≺area Ax1,x2,...,xr

and ∃xi, i ∈ (1, 2, . . . , r) , ∀Ay1,...,xi,...,yr
Ay1,...,xi,...,yr

=

0.

where xi is the coordinate of the domain to be oriented. According to the above

definition, the domains to be oriented in Fig. 6 are Area2,0, Area2,1 and Area4,0.

The domain to be oriented needs a corresponding oriented operation. We

design the recombination operator as follows. Let U = (u1, u2, . . . , un) and

V = (v1, v2, . . . , vn) represent the parent individuals for recombination and n

is the dimension of the decision space. Then, the offspring is defined as W =

(w1, w2, . . . , wn); wi = a (ui − vi) + vi, where a is a random number between 0

to 1. It is not hard to find that wi is located between ui and vi, because most

of the multiobjective optimization problems meet the connectivity [40], that

is to say, the solutions that are distributed like neighborhood in the decision

space will be also distributed like neighborhood when mapped to the objective

space. Therefore, the new generated individual is more likely located in the

area between U and V . In addition, we select the individual in the unit domain

which is nearest to the domain to be oriented with a larger probability for

recombination. For the domain which only has individuals at one end, such as

Area4,0 in Fig. 6, we select the individual in the unit domain which is nearest

to the domain to be oriented and the individual in the other unit domain to

recombine.

4.6. Environmental Guiding Mechanism

The dynamic environmental guiding mechanism refers to guiding the differ-

ent sub-populations to evolve toward their desired environments based on the

new environmental knowledge and regulation, so that the population diversity

is enhanced. Similarly, we use the recombination operator introduced in Section

E, but a is a random number between 0.8 to 1. For different sub-populations,

the strategy to select parent individuals to be recombined is different:
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For the individual sub1 indiv that wants to go back in subpopulation1, first-

ly, we need to calculate which unit domain coordinates of guide-individuals are

located between sub1 indiv.old areai and sub1 indiv.new areai, and then we

select the individual that is the closest to sub1 indiv.old areai. If multiple in-

dividuals are in the same unit domain, the representative individual in the unit

domain is selected.

For the individual sub2 indiv that does not want to make any change in

subpopulation2, a recombination operation is not needed.

For the individual sub3 indiv that does not want to go back in subpopu-

lation3: if sub3 indiv.old areai > sub3 indiv.new areai, we need to calculate

which unit domain coordinates of guide-individuals are greater than sub3 indiv.old areai,

and then select the individual that is the farthest to sub3 indiv.old areai. If

sub3 indiv.old areai < sub3 indiv.new areai, we need to calculate which unit

domain coordinates of guide-individuals are less than sub3 indiv.old areai, and

then select the individual that is the farthest to sub3 indiv.old areai. Similarly,

if multiple individuals are in the same unit domain, the representative individual

in the unit domain is selected.

Fig. 7 is an example of recombination strategy. For individual A, the selected

another parent individual for recombination is A*.

A*
A.old_area

A.new_area

Guide-individual

A*

A.old_area

A.new_area

Guide-individual

A*

A.old_area

A.new_area

Guide-individual

(a) Subpopulation1 (b) Subpopulation3 (c) Subpopulation3

A.old areai > A.new areai A.old areai < A.new areai

Figure 7: Example of different recombinations.
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Algorithm 2 AdaptiveAdjustment

Require: sub1(subpopulation1), sub2(subpopulation2)

sub3(subpopulation3)

1: for all subpopulation sub1, sub2, sub3 do

2: Count the number of non-dominated individuals (num1, num2,

num3) in each subpopulation and the size of each subpopulation

(sub1.size, sub2.size, sub3.size).

3: end for

4: Calculate the radio to the size of the subpopulation itself, r1 =

num1/sub1.size, r2 = num2/sub2.size, r3 = num3/sub3.size.

5: Select the largest radio rmax, max=1 or 2 or 3.

6: if i! = max and subi.size > 10 then

7: submax.size = submax.size+ subi.size ∗ 20%

8: subi.size = subi.size− subi.size ∗ 20%

9: end if

10: Update the preset size of each subpopulation next time.

Meanwhile, in order to better solve some DMOPs with regular changes, the

size of three sub-populations is adaptively adjusted. First, the combined popu-

lation of the three sub-populations is evaluated. We count the non-dominated

individuals, and then compare the ratio of number of non-dominated individu-

als in each sub-population to the size of the subpopulation. For the two sub-

populations with smaller ratios, when the environment changes next time, the

size of two sub-populations is reduced by 20%, and no longer decreased until

its size is less than 10. The size of the subpopulation with the largest ratio

will increase accordingly. Algorithm 2 gives a detailed procedure of adaptive

adjustment strategy.

In addition, for periodic DMOPs, we introduce the strategy of memory when

the environment changes. We store the non-dominated individuals of the current

population in the memory pool, non-dominated sort these stored individuals in

the memory pool, and select Msize optimal individuals which adapt best to the

new environment. When the size of memory pool is over twice of the population
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Algorithm 3 DEE-DMOEA

Require: pop(current population), gmax(total number of generation)

1: Initialize a population pop; set t := 0; set iteration counter gt := 0.

2: Construct the dynamic environment according to Eq. (3).

3: Detect changes in the environment, if environment has not changed, turn to Step

7 6; else generate a new series of guide-individuals by environmental evaluation.

4: Environmental regulation, divide subpopulation.

5: Environmental guiding mechanism, recombine individuals and obtain new initial

population.

6: Environmental facilitating mechanism, optimize current population pop.

7: If gt > gmax, output pop and stop; else, set gt := gt+ 1, return to Step 2.

size, we use the principle of first in first out (FIFO) to update the memory pool,

which ensures that the algorithm does not consume too much extra storage

space and evaluation.

4.7. The frame of DEE-DMOEA

Now, we give the main procedure of DEE-DMOEA. The purpose of DEE-

DMOEA is to accelerate the convergence speed of the population at the static

optimization phase and improve the convergence and distribution of the popula-

tion. Meanwhile, it is to obtain new initial population after each environmental

change, so that the new population can quickly respond to changes in the dy-

namic environment. The pseudo-code of DEE-DMOEA is presented in detail in

Algorithm 3.

5. Test Instances and Performance Metrics

5.1. Test Instances

In this paper, a series of test problems proposed in [34] with linear or nonlin-

ear correlation between design variables were selected of various DMOOP types

[1] to compare the performance. Among them, F1 and F4 are from the FDA

test suite [1], F2 and F3 are from the DMOP test suite [23], and F5-F10 are
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newly proposed in [34]. JY1 and JY5 are newly proposed in [51]. F1-F4 are

linear correlation between the decision variables, while F5-F10 are nonlinear

correlation between the decision variables. Especially, F9 and F10 are more

complicated problems, and it is more difficult for an algorithm to converge on

them. The details of the ten problems can be found in [34].

5.2. Performance Metrics

Some metrics have been designed for dynamic optimization [45, 47, 46]. In

this paper, we introduce the dynamic generational distance (DGD) [23] and

inverted generational distance (DIGD) [34] metrics for DMOPs. The DGD and

DIGD metrics are defined as follows:

DGD =
1

|T |

∑

tǫT

GD (P F t, P t) ,

GD(P F t, P t) =

∑
vǫP t d (P F t, v)

|P t|

DIGD =
1

|T |

∑

tǫT

IGD (P F t, P t) ,

IGD(P F t, P t) =

∑
vǫPF t d (v, P t)

|P F t|

(8)

where P F t is a set of uniformly distributed Pareto optimal points in the P F at

time t, and P t is the solutions obtained at time t. d (P F t, v) = minuǫPF t

√
∑m

j=1

(
f
(u)
j − f

(v)
j

)2

is the distance between v and P F t; d (v, P t) = minuǫP t

√
∑m

j=1

(
f
(v)
j − f

(u)
j

)2

is the distance between v and P t; T is a set of discrete time points in a run and

|T | is the cardinality of T . DGD evaluates convergence of the algorithm. The

lower the DGD value is, the better convergence the obtained solution set has.

DIGD is a comprehensive metric to evaluate the convergence and distribution.

A lower DIGD value means that solution set obtained has better convergence

and distribution.

6. Experiments

In this section, DEE-DMOEA will be compared to three other algorithm-

s: the dynamic cooperative-competitive evolutionary algorithm (dCOEA), pro-
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posed by Goh and Tan [23], the population prediction strategy using optimiza-

tion algorithm RM-MEDA [43] (PPS-RM), proposed by Zhou et al.[34], and

the diversity maintenance on prediction, proposed by Ruan et al.[50]. In DEE-

DMOEA, the number of unit domain on each dimension is 40; the number of

guide-individual is 100; the number of selected optimal individuals from memo-

ry pool Msize = 5 (three objectives: 10). The population size N = 100 (three

objectives: 200); frequency of change τT = 25; severity of change nT = 10.

Other parameter settings of the three strategies use the given settings in [23]

and [34].

Since the DEE-DMOEA in this paper needs to consume one time of evalua-

tion in generating guide-individuals and memory pool. To be fair, the algorithm

iterations require removing the number of evaluations consumed at every envi-

ronmental change, and reducing the corresponding number of iterations. There-

fore, the frequency of change is set to be τT = 23 in DEE-DMOEA. We ran each

algorithm 20 times for each test instance independently. Each simulation ran

for 2500 generations (DEE-DMOEA: 2300 generations) and each strategy was

tracked to 100 times of environmental changes. As the dynamic test problems

introduced in Section 5 are all period, according to the parameter setting of

nT , the environment will change periodically with unequal frequency ranging

from 2 to 40. So, in order to discuss the performances of different strategies in

each period, the result of the experiment is divided into three stages except for

the first environmental change. Each stage tracks to 33 times of environmental

changes and its average is taken as the result. The statistical results of DIGD

and DGD over 20 runs can be found in Table 1.

6.1. Comparative Study

As can be seen in Table 1, in terms of comprehensive evaluation, DEE-

DMOEA performs better than dCOEA, PPS-RM and DMS on most of the test

problems; the mean DIGD in each stage is the smallest and becomes more and

more stable. Especially, in the first stage, the metric values are significantly

better than the other three algorithms. On F1-F4, where the decision variables
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Table 1: Statistical results of DIGD and DGD metric for four algorithms

Problems Statistic
DGD DIGD

dCOEA PPS-RM DMS DEE-DMOEA dCOEA PPS-RM DMS DEE-DMOEA

F1

Mean 2.01E-3 4.92E-2 6.90E-3 2.56E-3 1.75E-2 3.17E-2 7.90E-3 4.78E-3

1st stage 2.47E-3 1.38E-1 9.00E-3 2.99E-3 1.78E-2 8.26E-2 9.60E-3 5.08E-3

2nd stage 1.71E-3 4.93E-3 7.20E-3 2.43E-3 1.75E-2 6.32E-3 7.20E-3 4.66E-3

3rd stage 1.86E-3 4.85E-3 5.80E-3 2.25E-3 1.71E-2 6.28E-3 7.10E-3 4.60E-3

F2

Mean 7.95E-4 5.17E-3 9.40E-3 8.24E-4 1.19E-2 7.72E-3 1.29E-2 3.88E-3

1st stage 7.90E-4 7.65E-3 2.12E-2 9.54E-4 1.19E-2 1.17E-2 2.81E-2 3.98E-3

2nd stage 7.84E-4 3.92E-3 3.50E-3 7.44E-4 1.26E-2 5.73E-3 5.40E-3 3.86E-3

3rd stage 8.11E-4 3.93E-3 3.50E-3 7.73E-4 1.12E-2 5.66E-3 5.40E-3 3.82E-3

F3

Mean 2.48E-3 7.29E-2 7.80E-3 2.51E-3 2.16E-2 5.68E-2 9.10E-3 4.91E-3

1st stage 3.23E-3 2.09E-1 1.12E-2 3.30E-3 2.54E-2 1.58E-1 1.29E-2 5.49E-3

2nd stage 1.91E-3 4.56E-3 6.10E-3 2.46E-3 1.98E-2 6.17E-3 7.10E-3 4.89E-3

3rd stage 2.30E-3 4.62E-3 5.90E-3 1.78E-3 1.97E-2 6.15E-3 7.10E-3 4.35E-3

F4

Mean 3.05E-2 1.11E-1 1.10E-1 1.75E-2 5.38E-2 9.13E-2 1.08E-1 4.90E-2

1st stage 2.57E-2 1.33E-1 1.30E-1 2.17E-2 5.60E-2 9.76E-2 1.16E-1 5.16E-2

2nd stage 3.66E-2 9.74E-2 1.10E-1 1.60E-2 5.22E-2 8.48E-2 1.04E-1 4.78E-2

3rd stage 2.92E-2 1.03E-1 1.70E-1 1.50E-2 5.33E-2 8.78E-2 1.04E-1 4.77E-2

F5

Mean 2.23E-1 1.86E-1 2.40E-2 2.38E-2 3.33E-1 7.62E-2 1.50E-2 1.93E-2

1st stage 4.13E-1 5.20E-1 3.90E-2 3.61E-2 5.54E-1 1.92E-1 1.80E-2 2.64E-2

2nd stage 1.59E-1 2.25E-2 3.00E-2 2.09E-2 2.58E-1 2.07E-2 1.38E-2 1.77E-2

3rd stage 9.83E-2 1.56E-2 1.80E-2 1.44E-2 1.87E-1 1.59E-2 1.33E-2 1.39E-2

F6

Mean 1.15E-1 8.90E-2 3.50E-2 1.57E-2 2.51E-1 3.95E-2 2.35E-2 1.36E-2

1st stage 1.62E-1 2.36E-1 8.80E-2 2.11E-2 3.71E-1 8.77E-2 5.16E-2 1.64E-2

2nd stage 8.32E-2 1.85E-2 9.00E-3 1.38E-2 1.92E-1 1.77E-2 9.40E-3 1.28E-2

3rd stage 9.90E-2 1.26E-2 9.50E-3 1.21E-2 1.90E-1 1.31E-2 9.60E-3 1.16E-2

F7

Mean 9.42E-2 1.68E-1 2.80E-2 1.87E-2 2.19E-1 5.42E-2 1.66E-2 1.42E-2

1st stage 1.24E-1 4.79E-1 6.90E-2 2.41E-2 3.17E-1 1.36E-1 3.37E-2 1.77E-2

2nd stage 7.69E-2 1.41E-2 6.90E-3 1.50E-2 1.83E-1 1.41E-2 8.10E-3 1.29E-2

3rd stage 8.17E-2 1.21E-2 7.00E-3 1.70E-2 1.58E-1 1.26E-2 8.20E-3 1.20E-2

F8

Mean 1.08E+0 1.21E+0 1.70E-1 1.53E-1 2.58E-1 3.83E-1 1.19E-1 9.15E-2

1st stage 9.84E-1 1.55E+0 1.90E-1 2.32E-1 2.98E-1 4.64E-1 1.25E-1 1.08E-1

2nd stage 1.08E+0 9.94E-1 1.60E-1 1.11E-1 2.46E-1 3.22E-1 1.16E-1 8.17E-2

3rd stage 1.19E+0 1.10E+0 1.70E-1 1.17E-1 2.29E-1 3.62E-1 1.17E-1 8.42E-2

F9

Mean 9.76E-2 4.25E-1 5.50E-02 4.17E-2 2.00E-1 2.38E-1 3.30E-2 2.91E-2

1st stage 1.34E-1 1.04E+0 4.90E-2 8.85E-2 3.07E-1 5.65E-1 3.06E-2 5.91E-2

2nd stage 7.70E-2 1.20E-1 6.40E-2 2.25E-2 1.60E-1 7.11E-2 3.67E-2 1.60E-2

3rd stage 8.17E-2 1.18E-1 5.30E-2 1.41E-2 1.34E-1 7.81E-2 3.17E-2 1.24E-2

F10

Mean 1.97E-1 5.56E-1 8.30E-2 1.70E-1 2.14E-1 2.43E-1 2.24E-1 7.80E-2

1st stage 2.69E-1 9.02E-1 2.80E-1 3.54E-1 3.00E-1 3.91E-1 2.35E-1 1.47E-1

2nd stage 1.73E-1 3.91E-1 3.80E-2 1.20E-1 1.83E-1 1.75E-1 2.16E-1 6.41E-2

3rd stage 1.48E-1 3.75E-1 3.40E-2 3.71E-2 1.59E-1 1.64E-1 1.26E-1 2.24E-2

JY1

Mean 8.80E-2 1.00E-2 3.80E-2 4.10E-2 1.82E-1 1.86E-1 3.16E-1 1.82E-1

1st stage 9.30E-2 2.30E-2 2.40E-2 5.90E-2 5.81E-1 1.88E-2 3.50E-2 5.49E-2

2nd stage 8.50E-2 4.00E-3 3.90E-2 1.20E-2 5.80E-1 7.53E-3 2.40E-2 1.50E-2

3rd stage 8.90E-2 3.90E-3 3.80E-2 9.30E-3 5.80E-1 7.35E-3 5.60E-2 1.29E-2

JY5

Mean 1.60E-1 1.90E-1 4.80E-1 1.60E-1 1.82E-1 1.86E-1 3.16E-1 1.82E-1

1st stage 1.60E-1 1.30E-1 2.40E-1 1.20E-1 9.97E-2 1.28E-1 4.23E-1 1.21E-1

2nd stage 2.10E-1 2.50E-1 3.60E-1 2.30E-1 2.40E-1 2.45E-1 3.65E-1 2.30E-1

3rd stage 1.50E-1 1.80E-1 2.60E-1 1.70E-1 1.84E-1 1.79E-1 3.25E-1 1.76E-1
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are linearly correlated, the mean DIGD of dCOEA is less than that of PPS-RM,

but in the later two stages, PPS-RM performs better than dCOEA. On F5-

F8, where the decision variables are nonlinearly correlated, dCOEA performs

worse than PPS-RM, and with the environmental periodic changes and the

accumulation of experience, PPS-RM will stabilize in the latter two stages and

shows a gradual improved trend. On F9 and F10, which are more complicated

problems, the performances of dCOEA and PPS-RM are not satisfactory. On

JY1, DEE-DMOEA is the best for the mean value; PPS-RM is the best for the

other stages. On JY5, DEE-DMOEA is the best for all the stages.

In terms of convergence evaluation, DEE-DMOEA shows the best perfor-

mance on most test problems. On F1, F2 and F3 problems, the DGD of d-

COEA is relatively average and slightly better than that of DEE-DMOEA. But

overall, the metric values are similar to DEE-DMOEA. Similar to the results

of comprehensive evaluation, dCOEA performs better on problems which have

linear correlation between decision variables, and performs worse on problems

which have nonlinear correlation between decision variables than PPS-RM.

It is not hard to explain the results. It is mainly because the environmental

facilitating mechanism of DEE-DMOEA can accelerate the convergence speed

of the population at the static optimization phase after environmental changes.

Meanwhile, the mechanism can guide the individuals to evolve toward the do-

main to be oriented, thereby improving the convergence and distribution of

the population. When a change is detected, the environmental guiding mech-

anism helps the population to respond quickly to new changes and generate a

new initial population and accelerate the convergence of the algorithm to the

new optimal solutions. dCOEA is a competitive-cooperative co-evolutionary

algorithm; it generates new individuals by selecting representatives of different

sub-populations and themselves to recombine and evaluate. This method can

achieve good results in solving problems where the decision variables are linear-

ly correlated. However, on solving problems which have nonlinear correlation

between the decision variables, it is ineffective.

PPS-RM uses an autoregressive model (AR) to predict a new population
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center at the next time by storing the population center on a continuous time

series. Meanwhile, it predicts a new population distribution of the next time by

recording the shape of population in the last two moments. The algorithm relies

on the periodic environmental changes and accumulation of experience, so at

the initial stages, the performance is poor. Along with the periodic changes, the

accumulation of historical information could be sufficient to better predict the

initial population. Therefore, PPS-RM will stabilize in the latter two stages.

6.2. Comparison of Distribution of Final Obtained Population

In order to visually analyze the performance of each algorithm, we choose

four typical test problems, F1, F3, F6, and F9, and draw the distribution of

final obtained populations of four algorithms for solving them at different time,

shown in Fig. 8 to Fig. 11.

By comparison, the experimental results are similar to those in the previous

section. The convergence and diversity of DEE-DMOEA are far better than

dCOEA and PPS-RM at the beginning stages of environmental change, which

indicates that DEE-DMOEA is able to respond to environmental changes more

quickly and accurately. Furthermore, the convergence and diversity of PPS-RM

is poor, indicating when the accumulation of information is insufficient, PPS-RM

can not make accurate predictions. In the later stages of running, DEE-DMOEA

is the same as PPS-RM, which has a better convergence and distribution, and is

slightly better than PPS-RM on the nonlinear problems. Although dCOEA can

obtain solutions with better convergence on the linear problems, the distribution

of solutions is poor. When solving nonlinear problems, dCOEA can only obtain

a few of the dominated individuals, which indicates that the algorithm is not

suitable for solving such problems. As to the ability to solve the complicated

problem F9, the advantage of DEE-DMOEA is more obvious. The three other

algorithms can not achieve better convergence and distribution, while DEE-

DMOEA can more accurately track to new optimal solutions and obtain a Pareto

optimal solution set with better convergence and distribution. It indicates that

DEE-DMOEA is more suitable for solving complicated nonlinear problems than
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Figure 8: Solution sets for four algorithms at six different time steps on F1.

27



0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

f1

f2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

f1

f2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

f1

f2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

f1

f2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

f1

f2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

f1

f2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

f1

f2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

f1

f2

t=15

t=20

t=5 t=5 t=5
t=5

t=10

t=15

t=20

t=10

t=15

t=20

t=10

t=15

t=20

t=80

t=70

t=60

t=50

t=80

t=70

t=60

t=50

t=80

t=70

t=60

t=50

t=80

t=70

t=60

t=10

t=50

(a) dCOEA (b) PPS−RM

(a) dCOEA (b) PPS−RM

(c) DMS

(c) DMS

(d) DEE−DMOEA

(d) DEE−DMOEA

Figure 9: Solution sets for four algorithms at eight different time steps on F3.
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Figure 11: Solution sets for four algorithms at eight different time steps on F9.
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Figure 12: IGD trend comparison of DEE-dMOEA-Random and DEE-dMOEA-Guide over

number of changes for 20 runs on FDA1 and F6.

the other three algorithms.

6.3. Comparison of DEE-DMOEA-Guide and DEE-DMOEA-Random

In Section 4.3 Environmental Evaluation, we generated some guide-individuals

to guide evolution when evaluation was for population. For deeper observation of

the role of the part, we use random individuals to replace the guide-individuals.

The algorithm with random individuals is called DEE-dMOEA-Random, and

the algorithm with guide-individuals is called DEE-dMOEA-Guide.

Fig. 12 shows the IGD trend comparison of DEE-dMOEA-Random and

DEE-dMOEA-Guide over the number of changes for 20 runs on FDA1 and

F6. On FDA1, it can be seen that the IGD graph of DEE-dMOEA-Guide is

below the IGD graph of DEE-dMOEA-Random over most of the changes, espe-

cially in the early stage. On F6, the comparison result of IGD trend is similar

to FDA1. However, the fluctuation on F6 is larger than FDA1. Overall, the

effect of DEE-dMOEA-Guide is better than DEE-dMOEA-Random.
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7. Conclusions

In this paper, we have proposed a dynamic multiobjective evolutionary al-

gorithm based on a dynamic environment evolutionary model (DEE-DMOEA)

to solve dynamic multiobjective problems. In the proposed algorithm, we build

a dynamic environment evolutionary model, which makes use of the dynamic

environment to record different knowledge and information generated by pop-

ulation before and after an environmental change, and in turn, the knowledge

and information guide the search in the dynamic environment. The model ac-

celerates the convergence speed of population at the static optimization phase

and improve the convergence and distribution of the population. Furthermore,

it enhances population diversity by guided method when a change is detect-

ed, so that the new population can quickly respond to changes in the dynamic

environment.

Compared with three other algorithms, DEE-DMOEA has shown faster re-

sponse to the environmental changes than peer algorithms in solving linear or

nonlinear problems, with its solution set having better convergence and diver-

sity. Our future work will be designing a more accurate dynamic environment

evolutionary model. Furthermore, our focus in the future will also be the ap-

plications of the dynamic multiobjective evolutionary algorithms in practical

problems.
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