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The role of multiplier bounds in fuzzy data envelopment analysis 

 
Abstract 

The non-Archimedean epsilon ε is commonly considered as a lower bound for the dual input 

weights and output weights in multiplier data envelopment analysis (DEA) models. The amount 

of ε can be effectively used to differentiate between strongly and weakly efficient decision 

making units (DMUs). The problem of weak dominance particularly occurs in Fuzzy Data 

Envelopment Analysis where the reference set is fully or partially defined in terms of fuzzy 

numbers. In this paper, we propose a new four-step fuzzy DEA method to re-shape weakly 

efficient frontiers along with revisiting the efficiency score of DMUs in terms of perturbing the 

weakly efficient frontier. This approach eliminates the non-zero slacks in fuzzy DEA while 

keeping the strongly efficient frontiers unaltered. In comparing our proposed algorithm to an 

existing method in the recent literature we show three important flaws in their approach that our 

method addresses. Finally, we present a numerical example in banking with a combination of 

crisp and fuzzy data to illustrate the efficacy and advantages of the proposed approach. 

‎Keywords‎: ‎Data envelopment analysis‎; ‎Epsilon‎; Fuzzy data‎; Weak frontier‎. ‎ 

JEL Classification C61  D20  D80 

 ‎ 

1. Introduction 

Data envelopment analysis (DEA) introduced by Charnes et al. (1978) is a common non-

parametric tool that evaluates‎ ‎the relative efficiency measurement of a group of production 

processes, frequently referred to as decision making units (DMUs). The seminal radial CCR 

model is referred to as the input-oriented (output-oriented) model in which inputs (outputs) are 

proportionally reduced (expanded) while outputs (inputs) remain unchanged.  

   The flexibility of the DEA models implies that the weights (multipliers) change across the 

frontier for a non-degenerate data set, making each DMU appear in its most favorable light. 

Hence, the multiplier DEA models often generate a large number of zero valued weights.  

Charnes et al. (1979) and Charnes and Cooper (1984) defined strictly positive weights by 

considering a non-Archimedean infinitesimal ε as a lower bound for dual weights. 

   Ali and Seiford (1993) proposed a method for determining an upper bound of ε such that the 

feasibility of the multiplier model and boundedness of the envelopment model are preserved. 

However, Mehrabian et al. (2000) highlighted that the upper bound for ε in the CCR and BCC 
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models defined by Ali and Seiford (1993) cannot guarantee feasibility of the multiplier model nor 

boundedness of the envelopment model. Mehrabian et al. (2000) then proposed a procedure to 

identify an assurance interval for ε. Amin and Toloo (2004) proposed an polynomial-time 

algorithm for computing ε where this algorithm is polynomial-time with respect to the number of 

DMUs. Alirezaee (2005) extended Mehrabian et al. (2000)’s method for specifying an overall 

assurance interval of ε that was more computationally efficient. Jahanshahloo and Khodabakhshi 

(2004) introduced a procedure to calculate an assurance bound of ε such that the envelopment 

model is bounded and the dual model is feasible. Alirezaee and Khalili (2006) used a 

counterexample to demonstrate that the overall assurance interval of ε proposed by Mehrabian et 

al. (2000) may lead to incorrect detection of the efficient and inefficient DMUs. To deal with the 

problem, they proposed an ε independent model that was capable of classifiying strongly 

efficient, weakly efficient and inefficient DMUs. 

The frontier of the production possibility set (PPS) used for evaluation of DMU in DEA may 

not be Pareto-efficient. This problem stems from zero-valued dual weights (multipliers) (or 

equivalently strictly positive values for the optimal slacks) for certain weakly efficient DMUs. 

Bessent et al. (1988) used the extrapolated efficient facets to deal with the non-zero slacks. 

However, the constrained facet analysis proposed by Bessent et al. (1988) cannot be applied 

when extreme efficient DMUs span a non full-dimensional efficient facet (FDEF
2
). In the 

presence of at least m+s-1 CCR extreme efficient DMUs, Green et al. (1996) proposed a mixed-

binary linear problem to deal with the non-zero slacks. Chen et al. (2003) calculated the lower 

bounds using the strong complementary slackness condition (SCSC) for extreme efficient DMUs 

so as to treat non-zero slack values in DEA. 

   In general, management information systems and decision support systems are designed to 

provide managerial information about past and current process resources and outcomes. 

However, information that may comprise uncertainty
3
, incompleteness, or fuzziness

4
 cannot be 

handled by these systems, although this type of information may be vital for undertaking 

                                                 
2
 A FDEF refers to a facet on which m+s-1 linearly independent efficient DMUs lie under CCR model where m and s 

are the numbers of inputs and outputs, respectively. 
3
 The notion of "uncertainty" has a general meaning, depending on context and discipline. It can be considered as an 

umbrella term that covers several semi-related concepts connected with "lack of certainty" in reasoning, thereby, 

uncertainty involve vagueness, imprecision, ambiguity, indeterminacy, missing information, error and so on 

(Bammer and Smithson, 2008). 
4
 Fuzziness is the cause of not only vague relationships (i.e., non-bivalence), but also a plentiful amount of 

information in which these types of fuzziness have been called “intrinsic fuzziness” and “informational fuzziness”, 

respectively (Zimmermann,1987). 
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managerial action. Moreover, separate and incompatible information systems gathering 

production data from distinct stages of a production process may lead to “noise” or measurement 

errors. In this respect, conventional DEA models also detract attention from uncertainty such as 

linguistic, interval, ordinal, and ratio interval data. This problem has been dealt with in the DEA 

literature in different ways. The exclusion of units with uncertain data from the analysis is the 

simplest method, although the use of such outlier detection and removal may substantially change 

the level and shape of the non-parametric frontier (Simar and Wilson, 2000, Agrell and Niknazar, 

2014). 

   To deal with uncertainty in DEA, the particular focus of the researchers is on two approaches; 

stochastic DEA first proposed by Land et al. (1993) and fuzzy DEA first proposed by Sengupta 

(1992). 

   Stochastic DEA, also called Chance-constrained DEA, can be used in the case of stochastic 

data in production relationships (e.g., unpredictable weather in agriculture) (Land et al., 1993; 

Olesen and Petersen, 1995). When the production plans are fuzzy, the fuzzy DEA approach 

brings the performance evaluation into action to conquer “vagueness”
5
. This stems from the 

fuzzy set theory and fuzzy mathematical programming initiated by Zadeh (1965) and further 

extended by Zimmermann (1996). 

    The relative merits and complementarity of fuzzy and stochastic programming models have 

been widely discussed. The fuzzy modelling approach enjoys an undisputable success in 

computer science, mathematical and engineering applications. However, we face situations in 

which classical probability cannot be computationally efficient as specified by Kolmogorov’s 

axioms.  

    Stochastic DEA requires either a priori predictable regularity or a posteriori outcome data, 

which may not be easy or possible to build for settings where the event is unique or deterministic. 

On the other hand the fuzzy DEA approach draws on vague values represented by membership 

functions of the fuzzy sets theory (Triantis and Girod 1998; Hatami-Marbini et al. 2013). It is 

necessary to point out that the preciseness requires more data, normally more costly to obtain for 

organizations. Triantis (2011) states that “data necessary for the fuzzy approach, stochastic 

                                                 
5
 Two main categories of uncertainty are linked with the terms “vagueness” and “ambiguity”, in which vagueness is 

connected with the hurdle of making precise distinctions while ambiguity is connected with one-to-many relations, 

i.e., situations with two or more alternatives that remain unspecified. While the concept of a fuzzy set represents a 

basic mathematical framework for dealing with vagueness, the concept of a fuzzy measure is a general framework 

for dealing with ambiguity (Klir, 1987). 
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approach, and the crisp DEA approach could be obtained at a cost ranging in the hundreds, tens 

of thousands, and millions of dollars, respectively”. For these reasons, fuzzy set theory has 

gradually been applied into DEA models so as to provide an alternative modeling avenue under 

uncertainty.  Hatami-Marbini et al. (2011) and Emrouznejad et al. (2014) are examples of recent 

surveys of fuzzy DEA methods, distinguishing six categories in the literature viz. (1) the 

tolerance approach (e.g. Sengupta 1992), (2) the α-level based approach (e.g. Kao and Liu, 2000; 

Hatami-Marbini and Saati, 2009; Ignatius et al. 2016), (3) the fuzzy ranking approach (e.g., Guo 

and Tanaka, 2001), (4) the possibility approach (Lertworasirikul et al., 2003) (5) the fuzzy 

arithmetic (e.g., Wang et al. 2009), and (6) the fuzzy random/type-2 (e.g., Qin et al. 2009). 

Besides these main categories, we may add the fuzzy clustering and dominance methods (e.g., 

Triantis and Eeckaut, 2000; Triantis et al., 2003; Seaver et al. 2004) that have received 

significantly less attention in the literature. As concluded in Hatami-Marbini et al. (2011), the 

fuzzy DEA literature primarily focuses on theoretical perspectives while its practical (societal) 

utility still remains unclear and requires much further investigation. 

   The main idea of the α-level based approach as the most widespread fuzzy DEA method is to 

convert the fuzzy DEA model into a pair of parametric models for calculating the lower and 

upper bounds of the efficiency at a given α. As a consequence, the imprecise DEA model 

involving interval data can be a special case of the α-level based approach of fuzzy DEA model 

for a specified α. The current literature on different DEA models for interval data is rich (cf. e.g., 

Despotis and Smirlis 2002; Shokouhi et al. 2010, 2014; Emrouznejad et al. 2011, 2012). Despotis 

and Smirlis (2002) proposed a pair of models to calculate the lower and upper bounds of the 

efficiency where data are characterized by interval quantities. To evaluate a given DMU they 

used two different technologies for the pessimistic and optimistic viewpoints. Wang et al. (2005) 

modified Despotis and Smirlis (2002)’s method by using a fixed technology in evaluating the 

interval efficiency of a DMU. 

   In the fuzzy DEA literature, Khoshfetrat and Daneshvar (2011) introduced a framework to 

identify the weakly efficient DMUs for the case of fuzzy inputs and outputs. Their approach 

determines a lower bound for each input weight, εi, and output weight, εr, respectively. Prior to 

calculating the radial efficiency projections, the fuzzy data is transformed to interval data using 

the α-level approach and Despotis and Smirlis (2002)'s method is then applied for all α-levels. 

   The contribution of this paper is a new four-step imprecise DEA method for characterizing 
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weakly efficient frontiers by defining an ε associated with inputs and outputs while guaranteeing 

a feasible solution. The method draws on the classification into four classes of strictness of 

efficiency, as in Charnes et al. (1991), based on their efficiency scores and optimal slacks. We 

compare our results with those obtained by the method in Khoshfetrat and Daneshvar (2011), 

proving three important flaws in their solution to the problem.  

   The rest of this paper is organized as follows‎: ‎Section 2 reviews the conventional DEA models 

and discuss multiplier bounds in DEA followed by overviewing imprecise DEA formulations. In 

Section 3, we ‎present a four-step fuzzy DEA method for re-shaping weakly efficient frontiers 

along with modifying the efficiency score of DMUs in terms of perturbing the weakly efficient 

frontier. We demonstrate the shortcomings of the Khoshfetrat and Daneshvar (2011)  method in 

Section 4. In‎ Section 5, we present a numerical example to illustrate the proposed‎ ‎method in this 

study. ‎ Finally, we provide some concluding remarks in Section 6. 

 

2. Performance evaluation 

In this section, we present some basic DEA formulations, weight bounds in DEA and imprecise 

DEA models used throughout the paper. 

2.1. Conventional DEA models 

Data envelopment analysis (DEA) as a nonparametric technique has been frequently applied to 

measure the relative efficiency of a set of Decision-Making units (DMUs).  

Assume that there are n DMUs in a reference set of observations where the jth (j=1,...,n) 

observation is characterized by an input vector 
 
 and an output vector . 

Specifically, DMUo consumes an amount 0iox   of input i to produce an amount 0roy   of 

output r. The s n  output matrix is denoted by Y, and the m n  input matrix is denoted by X. 

The corresponding linear programming problem for the radial (input-oriented) CCR
6
 model (so-

called multiplier CCR or dual problem) and its primal formulation, (which is called envelopment 

CCR), are presented to evaluate DMUo consisting of ( , )o ox y  as follows (Charnes et al. 1978): 

 

                                                 
6
 CCR is also known as CRS (Constant-Returns-to-Scale) model.  
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(1-1) Multiplier CCR model (1-2) Envelopment CCR model 
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where u and v are the non-negative weights vectors associated with output and input, 

respectively. Charnes et al. (1985) introduced the additive model combining both orientations as 

follows: 

(2-1) Dual additive model (2-2) Primal additive model 
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   The direct slacks in the additive model, the input excesses s  and output shortfalls s  can be 

used to identify the efficiency. DMUo is called efficient if and only if * 0s   and * 0s   in 

model (2-2); otherwise, DMUo is called inefficient. The determination of such a framework 

enables a better interpretation of the definitions of “Pareto-Koopmans” or “strong” efficiency 

discussed in the next section. 

2.2. Multiplier bounds 

The multiplier model (1-1) often results in a large number of zero-valued weights. Cooper et al. 

(2002) state that some DMUs may not be (strongly) efficient even if they are presented as 

(radially) efficient DMUs in conventional codes and software. This dilemma frequently occurs for 

DMUs that have strong skewness  towards one input or output. Charnes et al. (1979) and Charnes 

and Cooper (1984) modified the multiplier DEA model by prescribing strictly positive weights. 

As a result, a non-Archimedean infinitesimal ε was introduced as a lower bound for weights in 

model (1-1) to detect non-proportional inefficiencies (slacks). The resulting models are stated as 

follows: 
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 (3-1) Multiplier CCR model (3-2) Envelopment CCR model 
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where s  and s  are the slack variables used to transform the inequalities in (1-2) to equivalent 

equations. The efficient DMUs can be divided into two distinct groups: strongly efficient and 

weakly efficient. In model (3-2), DMUo is strongly efficient iff both (i) 
* 1ow   and (ii) all slacks 

* * 0s s    while DMUo is weakly efficient iff both (i) 
* 1ow   and (ii) * 0s   and/or slacks 

* 0s   for at least one i and r. 

   Note that in solving model (3-2) involving the non-Archimedean infinitesimal ε, simply 

choosing an arbitrary value for ε may lead to erroneous results since theoretically it is impossible 

to represent an infinitesimal quantum within a finite tolerance numerical representation. Indeed, 

models (3-1) and (3-2) may be infeasible and unbounded, respectively, if the ε is wrongly  

defined.  The determination of an appropriate value or interval for the non-Archimedean ε is a 

challenging and open issue.   

   Theoretically, the CCR envelopment surface is composed of given facets resulting from the 

intersection of the half-spaces of supporting hyperplanes that passes through the efficient DMUs 

and origin. The optimal solutions of model (3-1) yield normal vectors of supporting hyperplanes. 

If  * *,u v  are the optimal solutions of model (3-1), a DMUo is efficient if it lies on a facet-

defining hyperplanes of the envelopment surface; specifically, a hyperplane of the form  

* * * *1 0o o o ou y v x u y v x    
 

 

   Thus,  * *,u v  is the normal vector of supporting hyperplane in conjunction with DMUo. If all 

components of vector  * *,u v  take positive values and * 1  , then the complementary slackness 

condition implies that all components of vector  * *,s s   are zero and that 
* 1ow   in the optimal 

solutions of model (3-2). In this situation the strongly efficient DMUo is lying on the technically 

efficient frontier. On the other hand, if there exists at least one component of vector  * *,u v  with 
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zero value and 
* 1o  , then, according to the complementary slackness condition, there exists at 

least one non-zero component in vector  * *,s s   and 
* 1ow   in the optimal solutions of model 

(3-2). In this case, DMUo is positioned on the weakly efficient frontier. As a result, the normal 

vector  * *,u v  of the hyperplane passing through a weakly efficient DMU has at least one zero 

component causing the hyperplanes associated with the weak frontier to be parallel to at least one 

axis of inputs or outputs. On a separate interpretation, it is necessary to underline out that the 

weak efficiency contradicts with the efficiency defined as a non-dominated DMU. To deal with 

this problem, numerous studies have been implemented to determine the weak efficient DMUs by 

perturbing the weak efficient frontiers (see e.g., Thanassoulis and Allen, 1998; Allen and 

Thanassoulis 2004).  

2.3. DEA models for imprecise data 

This paper aims to use the LR-type of fuzzy sets consisting of a wide range of type of fuzzy 

numbers such as triangular and trapezoidal fuzzy numbers since the computational efficiency is 

important for implementations (see Zimmermann, 1996). We assume access to n production 

plans (j=1,...,n) where each production plan consume m fuzzy inputs of the LR-type, denoted by 

 ̃       
     

      
      

  to produce s fuzzy outputs of the LR-type, denoted by  ̃   

    
     

      
      

  . The membership function of inputs and outputs for the j
th

 production plan 

can defined as follows: 
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{
 
 

 
              

       
  

                  
        

  

             
        

 

                  

 

If 1w  , the fuzzy input/output data is called a normal fuzzy number, and if 0 1w  , it is called 

a non-normal fuzzy number.  

   In some situations, these fuzziness definitions can be used to precisely reflect human reasoning 

such as “poor” (“good”) customer service, as well as the measurement of variability during the 

production process. In other words, the precise production plans can be relaxed by means of 

weaker assumption of fuzzy production plans. To assure feasibility of the relaxation, the 

distributions for the fuzzy inputs and outputs should be expressively verified with the experts or 

decision-makers that have produced them. The fuzzy number can be projected to a closed interval 
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of real numbers using α-level method to interactively find the most and least plausible bounds for 

inputs and outputs, denoted by    ,
L U

ij ijx x
 

 
  

 and    ,
L U

rj rjy y
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 ].
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   Despotis and Smirlis (2002) used the interval input-output data (i.e., α=0) to present two 

multiplier CCR models to determine the lower and upper bounds of the efficiency of  

DMUo, denoted by    ,L U

o o 
  

 
, as follows:  

(4-1) Lower efficiency (4-2) Upper efficiency 
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where  U

o 
  represents the upper bound of best possible relative efficiency for DMUo when the 

production frontier constraints the best situation for DMUo (i.e.,    
1 1
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possible relative efficiency of DMUo when the production frontier includes the worst situation for 

                                                 
7
 The α-cut as a certain type of inference draws conclusions in the presence of uncertainty. Inference in the 

framework of possibility theory as explained by Zadeh (1979) embraces a four-step procedure that can be 

respectively designated i) representation, ii) combination, iii) projection, and iv) interpretation. In addition, readers 

can find attempts and many studies in the field of descriptive statistics with fuzzy data, fuzzy random variables and 

statistical inference for fuzzy data in Kruse and Meyer (1987) and Viertl (1996). 



10 

 

DMUo (i.e.,    
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     where each observation lies within bounded interval 

for each α-level. The DMUs are classified into three distinct groups { , , }E E E  
 by means of 

the bounds of efficiency score as: 

 Group 1: A DMU is classified as E  group, so-called “fully efficient”, if its optimal 

lower bound efficiency obtained from (4-1) is the unity, i.e.,   *: 1L
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

 , 

 Group 2: A DMU is classified as E  group, so-called “efficient”, if its optimal upper 

bound efficiency obtained from (4-2) is the unity, i.e.,   *: 1U

j jE DMU  


 , 

 Group 3: A DMU is classified as E  group, so-called “inefficient”, if its optimal upper 

bound efficiency obtained from (4-2) is less than one, i.e.,
 

  *: 1U

j jE DMU  


 . 

   Wang et al. (2005) schematically showed that Despotis and Smirlis (2002)’s method has a 

shortcoming in using different technologies for measuring the interval efficiency of a DMU. In 

order to address this problem, Wang et al. (2005) developed the following pair of interval DEA 

models with the same technology or constraint set that forms a fixed and unified production 

frontier:  

(5-1) Lower efficiency (5-2) Upper efficiency 

   
1

max
s

LL

o r ro

r

u y







 

 
1

. . 1,
m

U

i io

i

s t v x






 

   
1 1

0, 1,..., ,

0, 0. 1,..., ; 1,..., .

s m
U L

r rj i ij

r i

i r

u y v x j n

v u i m r s

 
 

  

   

   

   
1

max
s

UU

o r ro

r

u y







 

 
1

. . 1,
m

L

i io

i

s t v x






 

   
1 1

0, 1,..., ,

0, 0. 1,..., ; 1,..., .

s m
U L

r rj i ij

r i

i r

u y v x j n

v u i m r s

 
 

  

   

   
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   To avoid infeasibility in the above models, the resulting reference set takes into account the 

optimistic point of view that is the best situation for outputs and the worst situation for inputs 

(i.e., the most bound of outputs  
U

rjy


 and the least bound of inputs  
L

ijx


). In the Wang et al. 

(2005) method a DMU was called efficient if its optimal upper bound efficiency obtained from 

model (5-2) is unity, i.e.,  * 1U

o 
  . 

 

3. The proposed method 

The traditional DEA approach, which is a deterministic method, requires the values of inputs and 

outputs to be known exactly as single values.  But, several DEA researchers argue that fuzzy 

DEA and interval DEA are more relevant in many practical situations due to the following 

reasons.  The deterministic DEA scores are very sensitive to changes in data values or errors in 

the estimation of the efficient frontier.  Quality differences in inputs and outputs among DMUs 

tend to distort the true efficiency performance evaluation (Hougaard, 1999).  Furthermore, the 

inputs and outputs in DEA are often estimates rather than direct observations.  For instance, the 

number of workers and the capital stock index calculated based on the perpetual inventory 

method are used as proxies of labor input and physical capital input, respectively (Khanjani 

Shiraz et al. 2016).  The calculated efficiency scores are then regarded as approximations of the 

DMU’s unknown capabilities (Hougaard, 1999).  From a psychological point of view, Kao 

(2006) argues that interval measures are more acceptable to management because they would be 

reluctant to accept that their efficiency performance is no better than their competitors.  In the 

present paper, we consider the framework for allowing for some or all of these circumstances.     

   For an illustration, let us consider LaPlante and Paradi’s (2015) market model that investigates 

how bank branches should be operated relative to their regional market conditions.  This model is 

developed to examine a branch’s capability to utilize its existing resources and regional market 

conditions to produce new financial products and expand its market share.  The market model 

contains variables such as the numbers of customers as an input and total lending and investment 

balances as outputs.   The bank managers may have had difficulties in grasping the exact 

information regarding these forecasting variables.  In this circumstance, the triangular 

membership function can be constructed using previous data information for predictions of center 
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and left-hand and right-hand spread parameters.  Our model can be applied even in the presence 

of missing data values, cf. Kao and Liu (2000).   

   Alternatively, the idea of risk-free and impossibility bounds can be incorporated as suggested 

by Triantis and Girod (1998) by the realistically attainable (i.e. conservative) values.  For the 

bank branch problem, the risk-free bound for the lending and investment balances may then be 

estimated as the smallest value in the recent past. Since Triantis and Girod (1998) interpret an 

impossibility bound as the one that represents the most improbable production scenario, the 

associated bound can be obtained as the largest lending and investment balances.  The bounds for 

the number of customers can be specified similarly.   

   The market model also includes non-discretionary (uncontrollable) environmental variables 

such as the local household income index and the number of competing branches in a 10 km 

radius.  Our proposed model can easily include these non-discretionary variables.  Hence, our 

model can provide useful information for relocation and closing of branches. 

   Now let us turn to the role of the multiplier bounds (known as ε) in DEA.  Let us first clarify 

how they are traditionally implemented and their importance in fuzzy DEA.  In standard DEA, 

Charnes and Cooper (1984, 1985) defined the “full [radial technical] efficiency” corresponding to 

Pareto-Koopmans efficiency by using the non-Archimedean scalar ε.  However, there is another 

frequently employed notion associated with the Debreu-Farrell efficiency measure, whose 

associated notion is non-Pareto-Koopmans efficiency or so-called “weak [radial] efficiency”.  In 

the (dual) multiplier DEA model, some estimated multipliers might attain zero values because 

they are chosen in the assessed DMU’s best possible light as is stated in the introduction.  Hence, 

the projected efficient point on the boundary is Pareto-Koopmans inefficient with the 

corresponding Debreu-Farrell score being one.  This is so because an input-output vector is 

Pareto-Koopmans efficient if and only if there exists a positive vector of multipliers.  If one 

chooses ε greater than a certain arbitrary real number, then the projection point may be outside 

the production possibility set.  Therefore, the choice of ε is very important in standard DEA.  This 

also extends to fuzzy DEA, but its implementation has not been successful in the fuzzy DEA 

literature due to its computational complexity. Consequently, obtaining an appropriate ε value is 

of great necessity so as to arrive at correct calculations, consistent estimates and, ultimately, to 

provide sound managerial insights. Indeed, the general adoption of fuzzy DEA in applications has 

been slower than expected from the number of published papers, partly because of a lack of 
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attention to implementation details and reliable software packages.  In the branch efficiency 

context above, resource misallocation potentially carried out by the bank relying on flawed 

analyses may lead to real financial losses.  To avoid this kind of situation, the present study 

provides a procedure for specifying appropriate lower and upper bounds for ε. It should be noted 

that ε is utilized as the coefficient of the supporting hyperplane (of the best-practice frontier) that 

contains the relevant facet associated to the assessed DMU.   

   In this section, we propose a four-step fuzzy DEA procedure for determining the lower bounds 

of input weights and outputs weights. We assume the same setting as above, transforming a set of 

strictly positive fuzzy data to interval data using the α-level approach. The details of the proposed 

steps are presented below: 

Step 1: We calculate the upper bound of the efficiency of all DMUs using model (5-2) from the 

optimistic viewpoint in which all DMUs are put in their best light to determine the efficiency of 

DMUs. It should be emphasized that the reference set derived at this step guarantees feasibility of 

model (5-2) as shown in Wang et al. (2005). DMUo is said to be efficient if the best possible 

upper bound efficiency of DMUo  * 1U

o 
  , otherwise it is said to be inefficient. We denote the 

set of at least weakly efficient DMUs by E  and the set of inefficient DMUs by E . The DMUs 

in class E  can be either weakly or strongly efficient. 

 

Step 2: We solve the primal fuzzy additive model (6) below for all DMUs with regards to Step 1 

(the optimal value of the objective for model (5-2)) so as to identify four classifications for 

DMUs: 

     

   

1 1

*

1

1

max

. . , 1,...,m,

y , 1,..., ,

0, 1,..., ,

, 0, 1,..., , 1,..., .

m s

i r

i r

n
L LU

j ij i o io

j

n
U U

j rj r ro

j

j

i r

s s

s t x s x i

y s r s

j n

    s s i m r s

 

 









 



  

  

 

  

 





 



 





 

(6) 
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where  
*

U

o 
  is the optimal solution of model (5-2) of DMUo at α, and 

 
s

i

+
  R

m  and rs   R
s

 
present 

the input excess and the output shortfall. The objective of model (6) is to find a solution that 

maximizes the sum of input excess and output shortfall while preserving    
*

.U U

o o
 

 
 

Suppose that  * *, 

i rs s  is an optimal solution of model (6) at a given α-level with the sum of input 

excess and output shortfall * * *

0

1 1

 

 

 
  
 
 

m s

i r

i r

s s s . By means of *

0s  and  
*

U

o 
 , we may then 

partition the DMUs into the sets E, F, NE and NF that are determined as follows: 

 A DMUo is called E if  
*

1U

o 
   and 

*

0 0s . 

 A DMUo is called F if  
*

1U

o 
   and 

*

0 0s . 

 A DMUo is called NE if  
*

1U

o 
   and 

*

0 0s . 

 A DMUo is called NF if  
*

1U

o 
   and 

*

0 0s . 

   DMUs in sets E and F that are also termed strongly and weakly efficient DMUs establish the 

strongly and weakly efficient frontiers in the DEA model, respectively. DMUs in sets NE and NF 

are called inefficient DMUs. DMUs in sets F and NF have positive slacks while DMUs in sets E  

and NE have zero slacks. The cause of positive slacks for the DMUs in set NF is that these units 

are being projected onto weak frontiers. Put differently, an inefficient DMU with non-zero slacks 

cannot be projected onto a full-dimensional efficient facet (FDEF). 

Proposition 1: Model (6) is feasible and its optimal objective function value is non-negative and 

bounded.  

Proof. See Appendix A. ■ 

 

Step 3: In the conventional CCR model, a full-dimensional efficient facet is derived from m+s-1 

linear independent efficient DMUs that must be placed on the same facet. We determine the 

positive lower bounds for all dual input (
v

i ) and output weights (
u

r ) to perturb the weakly 

efficient frontiers using the SCSC solution for the strongly efficient DMUs. Mathematically 

speaking, based on the SCSC solution
 

* * * *0, 0r r r ru s u s   
 
and 

* * * *0, 0i i i iv s u s    . The 

application of SCSC is found in many DEA studies e.g., Charnes et al. (1991). 
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We first maximize the sum of the input weights and output weights simultaneously for each 

strongly efficient DMU, i.e., for all kDMU E  for k=1,…,K, that are identified in step 2 

according to the technology from the optimistic viewpoint.  

 

 

   

1 1

1

1

1 1

max

. . 1,

1,

0, 1,..., ,

0, 1,..., ; 0, 1,..., .

m s

i r

i r

m
L

i ik

i

s
U

r rk

r

s m
U L

r rj i ij

r i

i r

v u

s t v x

u y

u y v x j n

v i m u r s

 





 







  

   

 





 





 

 
(8) 

   Let 
* *, ,i rs s  *

iv and 
*

ru  be an optimal solution for a strongly efficient DMU. If the optimal 

solution satisfies SCSC, 
*

iv and 
*

ru  are positive. Therefore, we attempt to find the positive lower 

bound of input and output weights for each DMU in set E such that the strongly efficient frontier 

keeps unchanged. We solve model (8) for DMUs in set E (phase 1) and determine the positive 

optimal 
*

iv and 
*

ru . Next (phase 2), we remove positive 
*

iv and 
*

ru
 
from the objective function of 

model (8) and re-solve the model. We continue inductively to solve model (8) until at some 

phases the optimal value is zero, i.e., there does not exist 
*

iv and 
*

ru  in the objective function of 

(8). As a result, the SCSC solution for DMUo is denoted by  ,o o

r iu v . As shown in Charnes et al. 

(1991), an optimal solution  ,o o

r iu v for DMUo that satisfies SCSC is the average of all (
*

iv , 
*

ru )
 

in each phase.  Suppose that   ,k k

r iu v  be SCSC solution for each kDMU E , k=1,…,K.  The 

lower bounds of input weights  v

i  and output weights  u

r  can be obtained as: 

 

 
1,...,

1,...,

min

min

v k

i i
k K

u k

r r
k K

v

u












 

Proposition 2: Model (8) is feasible and its optimal objective function value is non-negative and 

bounded. 

Proof. See Appendix B. ■ 
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Step 4: We re-calculate the efficiency score of DMUs in sets F and NF using model (5-2) in 

terms of perturbing the weakly efficient frontier by defined 
v

i  and 
u

r  
for sets I and R, 

respectively,
 
where 

 ,ij jI i x has positive slack value DMU F or NF   and 

 ,rj jR r y has positive slack value DMU F or NF  . 

In other words, we consider
 

,v

i iv i I  and ,u

r ru r R   as the lower bounds of input and 

output weights in calculating the efficiency of DMUs in set F and NF.  

The four-step procedure of the proposed method is summarized in Figure 1. In line with 

describing the steps of Figure 1, we also outline the computational complexity of the proposed 

procedure by counting the number of calculations in each step for each α-level: 

 Step 1 requires solving model (5-2) n times where n is the number of DMUs for 

calculating the upper efficiency of all the DMUs. It should be noted that the degree of 

fuzziness (or crispiness) adds information about the degree of uncertainty and our 

proposed fuzzy DEA model has this feature.  

 Step 2 requires solving model (6) n times for determining the E, F, NE and NF classes. 

 Step 3 first requires solving model (8)
 

E  times where E  is the cardinality of set E, then 

proceeds with solving model (8) up to its optimal objective function value turns into zero 

for calculating the lower bounds of input weights  v

i  and output weights  .u

r  

 Step 4 requires solving model (5-2) F NF  times in the presence of 
v

i and  u

r  
where 

F
 
and NF  are the cardinalities of sets F and NF, respectively, for re-calculating the 

upper efficiency of the DMUs in sets F and NF. 

----------Insert Figure 1 about here----------- 

 

Corollary 1. If DMUo belongs to sets E or NE, then its efficiency score keeps unchanged with 

lower bounds of 
u

r  and 
v

i . 
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Corollary 2. If DMUo belongs to sets F or NF, then its efficiency score will be changed after 

employing the lower bounds of 
u

r  
and 

v

i . 

 

4. Comparison with Khoshfetrat and Daneshvar (2011)   

Khoshfetrat and Daneshvar (2011) propose a method with claims similar to ours, making it a 

natural point of comparison. However, as we show below by means of three propositions and a 

counterexample, their method is flawed and does not produce the alleged results. We end this 

section with a constructive remark to partially correct their model.  

   Assume that there are n DMUs within a set of observations where each observation transforms  

m strictly positive
8
 fuzzy inputs, 1,...,j n  into s strictly positive fuzzy outputs, 

 1,...,j n . The fuzzy input-output set is transformed to interval data using the α-

level approach. The Khoshfetrat and Daneshvar (2011) method can be summarized as follows: 

Step 1: Calculate the upper efficiency of the DMUs using model (4-2) to determine the DMUs 

that are classified in the either E  or E  group.  

Step 2: Solve the primal fuzzy additive model (9)
9
 for DMUs in class E  with respect to the 

optimistic viewpoint in order to specify a set of the weakly efficient DMUs, viz.: 

   

   

1 1

1

1

min

. . 0, 1,..., ,

0, 1,..., ,

0, 1,..., ; 0, 1,..., ,

0, 1,..., .

m s

i r

i r

n
UL

io j ij i

j

n
LU

ro j rj r

j

i r

j

s s

s t x x s i m

y y s r s

s i m s r s

j n

 

 









 

 
  
 

   

   

   

 

 





 

 







 

(9) 

DMUo in E
 is called weakly efficient if the optimal value of (9) has a positive solution. The set 

of the weakly efficient DMUs is denoted by S. 

                                                 
8
  It is assumed by Khoshfetrat and Daneshvar (2011, p.340). 

9
 Technically speaking, it is Phase II of the conventional DEA that maximizes the sum of input excesses and output 

shortfalls. 
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Step 3: Calculate lower bounds for all dual input weights  v

i and output weights  u

r  to 

perturb the efficient frontiers. The two following models with the identical constraints and 

different objective functions ( max iv and max ru ) are solved for all iv  ( 1,...,i m ) and ru  (

1,...,r s ) belonging to the set of weakly efficient peers (S):  

 

   

1

1 1

max (max )

. . 1,

0, 1,..., ,

0, 1,..., ; 0, 1,..., .

i r

m
L

i io

i

s m
L U

r rj i ij

r i

i r

v u

s t v x

u y v x j n

v i m u r s



 



 



  

   



 
 (10) 

Suppose that 
*,( 1,..., )iv i m  and 

*,(r 1,...,s)ru   are the optimal solutions of the above models. 

Then, the lower bounds for the dual input weights  v

i  and output weights   u

r
 are defined as: 

 *min , 1u

r r ou DMU S r= ,..., s,    

 *min , 1v

i i ov DMU S i= ,..., m.    

Step 4: Calculate the upper bound of the efficiency scores for all the DMUs using the modified 

model (4-2) by consideration of the lower bounds of weights as:  

   , 1,..., , ,v u

i i r rv i m u r=1,...,s    .  

Let us present the shortcomings of Khoshfetrat and Daneshvar (2011) by means of three 

propositions:  

Proposition 3:  Model (9) has no feasible solution for DMUs in class E .  

Proof. See Appendix C. ■ 

   For more clarification, consider a small example with three DMUs, one interval input and one 

interval output.  Three units, DMUA, DMUB and DMUC, produce interval output [5, 6], [2, 4] and 

[3, 4] using interval input [2, 4], [2, 4] and [6, 8], respectively, depicted in Figure 2. In 

Khoshfetrat and Daneshvar (2011)’s method, the data set (4,5), (4,2) and (8,3)
10

 associated with 

DMUA, DMUB and DMUC is considered to determine the efficient frontier denoted by the radial 

line Tc(1) in Figure 2. When evaluating DMUA and DMUB using model (9), their optimal 

                                                 
10

 The first and second components of (x,y) represent x- and y- axes. 
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solutions, i.e., (2,6) and (2,4), touch the hull of the technology defined by the Tc(1) frontier. This 

explains why model (9) is infeasible for DMUA and DMUB and why DMUC is the only feasible 

alternative in the method of Khoshfetrat and Daneshvar (2011). In addition, we note that the 

Tc(2) hull is the frontier created by the technology of Despotis and Smirlis (2002) for evaluating 

DMUB while the technology of Wang et al. (2005) is constructed by the Tc(3) frontier for 

evaluating all DMUs. 

 

----------Insert Figure 2 about here----------- 

Proposition 4:  Model (9) has feasible solutions for DMUs in class E .  

Proof. See Appendix D ■ 

The results in Propositions 3 and 4 are in direct contradiction with the claim by Khoshfetrat and 

Daneshvar (2011, p.342) “that the above LP model [(9)] is infeasible if DMUo be (sic!) 

inefficient.”.  Since model (9) is used as the first step in the algorithm, the subsequent steps are 

performed on an incomplete reference set and the resulting order in Khoshfetrat and Daneshvar 

(2011) is then incorrect with respect to the full reference set.  

   The numerical example in Khoshfetrat and Daneshvar (2011, p.343) is accompanied by the 

statement that “we notice that in α = 0.25 all of the DMUs A, B, C, F, G and H are weak[ly] 

efficient. So for DMUs C, F and H we have: 
* 1    and at least one of the iv  and ru should be 

zero. Hence these DMUs are belonging to S”. Since the infeasibility applies for or all DMUs in 

E
, this result cannot have been obtained by the Khoshfetrat and Daneshvar (2011) method as 

described.  

Proposition 5:  The application of Step 4 in Khoshfetrat and Daneshvar (2011) may yield 

infeasible solutions.  

Proof. See Appendix E. ■ 

The impact of Proposition 5 is crucial, as it may lead to fruitless applications by practioners, 

trying to obtain solutions through a non-converging process. However, Khoshfetrat and 

Daneshvar (2011, p.344, Table 4) erroneously reported a result that cannot be the result of the 

algorithm.  The intuition behind Proposition 5 draws on classical results in convex analysis or 

multi-objective programming, where the Pareto-optimal set is characterized by projections 

towards an exterior point (ideal) or from an interior point (nadir), but not through a fully-

dimensional constrained solution.  
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   Finally, the two models (10) in Step (3) of the Khoshfetrat and Daneshvar (2011) method 

contain an error in the input correspondence. To create these models the best situation for DMUo 

and the worst situation for DMUj ( j o ) (i.e., the optimistic scenario) must be used (similar to 

models (4-2)) whereas models (8) take the worst situation for all the DMUs into account for 

calculating the maximum of the weights. In other words, the worst light of DMUs,  
L

rjy


 and 

 
U

ijx


, are used in models (10) to build the production set while DMUo considers  
L

iox


 that may 

violate the convex production set. The correct models, instead of models (10) that maximize 

input and output weights should be formulated as follows: 

 

   

   
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1 1

1 1

max (max )

. . 1,

0,

0, 1,..., , ,

0, 0. 1,..., ; 1,..., .
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i io
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s m
U L

r ro i io

r i

s m
L U

r rj i ij

r i

i r

u u

s t v x

u y v x

u y v x j n j o

v u i m r s



 

 



 

 



 

   

   



 

 

 

 

(11) 

 

5. Numerical example 

In this section, we present a numerical example to illustrate the proposed approach for 

determining the lower bounds of input and outputs weights in order to re-evaluate the weakly 

efficient DMUs appropriately.  Consider a hypothetical bank having eight new branches, 

evaluated by means of one crisp input and two fuzzy outputs as presented in Table 1.  The input 

is the size of branch office (in square meters) as a proxy for fixed resource allocation, without 

strategic and planning relevance.  The two fuzzy outputs are budgeted (future) total lending 

demand (output 1) and (future) total demand for investment funds (output 2).  The bank 

management would like to set a target for each branch in order to reconstruct the branch network 

based on the local budgets.  However, the outputs in the next period are not estimated precisely 

and are considered as fuzzy outputs.    

 

----------Insert Table 1 about here----------- 
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In the face of uncertainty, the α-cut concept is one of the key properties in fuzzy set theory 

providing a link between fuzzy and crisp functions (Klir & Yuan, 1995; Klir & Smith, 2001).  

The bank management decides to apply the α-cut method to deal with the imprecision associated 

with the outputs.  The possibility level α, signifying the degree of uncertainty, takes a value 

between 0 and 1.  For example, α=0, α=0.5, and α=1 represent the managers’ pessimistic, 

moderate, and optimistic views, respectively, regarding the future outputs.  Adding two in-

between values of α=0.25 and α=0.75, we estimate efficiency scores based on our method and 

obtain a table for managerial estimates with respect to different α values. The table corresponding 

to various degrees of uncertainty can be used to graph the efficiency of the new branches as a 

function of the ‘optimism’ α.  Note that the α value does not affect the crisp input data.  In this 

example, the proposed four-step method is applied based on the α-cut concept to solve this 

problem and the computational procedure is summarized as follows: 

Step 1: After applying the α-level method to fuzzy data for five levels {0, 0.25, 0.50, 0.75, 1}, the 

corresponding data revealed as reported in Table 2. The upper bounds of the efficiency of all the 

DMUs are calculated using model (5-2) at distinct α-levels to identify the set of the efficient 

DMUs as shown in the Table 3
11

. Therefore, Step 1 requires solving model (5-2) 8*5=40 times 

where 8 and 5 represent the number of DMUs and α-levels, respectively for obtaining the upper 

efficiency of all DMUs. For instance, let us consider α=0.50. From Table 3, DMU2, DMU3, 

DMU4, DMU5, DMU7 and DMU8 are efficient DMUs since their upper bounds are equal to unity 

and other DMUs are inefficient. The production frontier for α=0.50 is depicted using the black 

dashed line in Figure 3. To create this line, we use the best light of DMUs that are shown by the 

red bullets. We now need to classify the DMUs by means of the next step. 

 

----------Insert Tables 2 and 3 about here----------- 

----------Insert Figure 3 about here----------- 

Step 2: To identify the classification of DMUs, we solve model (6) for all the DMUs determined 

in the previous step. The results in Table 4 indicate that there is no weakly efficient DMU for 

                                                 
11

 To solve the mathematical models, we use General Algebraic Modeling System (GAMS) software and the 

pertinent code involving solving models (5-2), (6) and (8) for five different α-levels are appended as Appendix D. It 

is performed on a laptop computer with an Intel Core i7 CPU 2.80 GHz and 8-GB RAM. The elapsed time for 

solving all the models is 31 seconds. 
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α={0, 0.25} and that set F consequently is empty. From Table 5, DMUs in NF are determined for 

{0, 0.25, 0.50, 0.75, 1}. We can accordingly classify the DMUs into sets E, F, NE and NF for a 

specific α. Therefore, we solve model (6) 8*5=40 times in Step 2 where 8 and 5 represent the 

number of DMUs and α-levels, respectively, to determine the E, F, NE and NF classes. For 

instance, let us consider α=0.50. DMU3, DMU4 and DMU5 are the strongly efficient DMUs (i.e., 

E={3,4,5}), DMU7 and DMU8 are weakly efficient DMUs (i.e., F={7,8}), DMU1 and DMU6 

belong to sets NE and NF, respectively (i.e., NE={1} and NF={6}). 

 

----------Insert Tables 4 and 5 about here----------- 

Step 3: To compute the lower bounds of all input weights (
v

i ) and output weights (
u

r ), we first 

use model (8) at different α-levels {0, 0.25, 0.5, 0.75, 1} for the strongly efficient DMUs 

(determined in Step 2) and we then employ the proposed approach. Table 6 reports the values of 

v

i  and 
u

r . Note that it is necessary to solve model (8) 4+4+3+4+3=18 times where 4, 4, 3, 4 and 

3 indicate the number of runs regarding the 0.00, 0.25, 0.50, 0.75 and 1.00 levels, respectively, to 

calculate the lower bounds of one input and two output weights 1

v , 1

u and 2

u  for each α-level. 

----------Insert Table 6 about here----------- 

Step 4:  The upper bounds of the efficiency scores of DMUs in sets F and NF are re-assessed 

along with the lower bounds of the weights calculated in step 3. The results are reported in Table 

7. Notably, the efficiency scores of DMUs in sets E and NE are unchanged as Corollary 1 states, 

while the efficiency scores of DMUs in sets F and NF are modified based on defining some 

hypothetical efficient facets. This step solves model (5-2) F NF  times in the presence of 
v

i

and 
u

i  with the aim of re-calculating the upper efficiency of DMUs in sets F and NF Therefore, 

in this particular case, model (5-2) is run in total 14 times. 

 

----------Insert Table 7 about here----------- 

 

   Hence, the proposed method in this paper is capable of determining the lower bounds of input 

weights and outputs weights in order to re-evaluate the DMUs in sets F and NF. In other words, 

we slightly rotate the weak frontier hyperplanes from the appropriate extreme efficient DMUs for 

the purpose of more precise evaluation in the fuzzy environment. 
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6. Concluding remarks 

The problem of characterizing the non-Archimedean constant  is far from a trivial consequence 

of numerical implementations of efficiency projections. Already in a conventional setting with a 

production possibility set as a subspace of the real hyper cone, the widely used radial DEA-CCR 

model is unable to distinguish between weakly and strongly efficient observations. Intuitive 

solutions such as imposing a numerical value for  are far from harmless, as shown by Ali and 

Seiford (1993) and Thanassoulis and Allen (1998).  Indeed, this implies through duality a weight 

restriction that changes the production possibility set for projections and the resulting scores. The 

problems of characterizing the frontier are exacerbated in the presence of imprecise or fuzzy data. 

When the production possibility set is no longer well-defined, paradoxically an even more 

stringent approach is called for to characterize the observations, to achieve a reasonable level of 

discrimination and to correctly estimate radial projections in the space. Given that a projection of 

a fuzzy set yields a distribution for the efficiency, rather than a point estimate, an ad hoc 

approach relying upon the direct utilization of slack variables is conceptually complex and vague.    

 This paper proposes a new four-stage procedure for re-shaping the weakly efficient frontiers in a 

fuzzy production possibility set by introduction of the non-Archimedean infinitesimal ε as a 

lower bound for the dual weights. Infeasibility and violation of preserving the extreme efficient 

DMUs are the most frequent problems in imposing lower bound for the dual weights in the 

conventional DEA models. Our method guarantees feasibility in the presence of the lower dual 

weight bounds along with keeping the original strongly efficient frontier when input-output data 

are characterized by fuzzy numbers. Our detailed review of a seemingly related paper, 

Khoshfetrat and Daneshvar (2011), reveals a number of serious flaws that our method addresses.  

   Imprecise data applications are particularly interesting for further work and can be considered 

as generalizations of the conventional crisp production spaces. We note here that the literature on 

the directional distance functions in Chambers et al.’s (1996, 1998) relating to the radial 

projection have not been fully exploited for imprecise data.  Another related stream generalizes 

the convexity property over the production set into local and global semi-convex subsets as in 

Agrell et al. (2005). In this regard, it may also be interesting to anchor the current framework in 

the axiomatic approach of Podinovski and Kousmanen (2011) for non-convex production spaces 

with weak disposability.  
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   Finally and not least, comparative analyses on real data with intuitive interpretations would be 

interesting to contrast and validate the relative merits of the family of fuzzy DEA models with 

that of conventional approaches using mean values. The contribution in this paper is one step 

towards a both conceptually sound and numerically stable implementation of the former 

approaches. 
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Appendix A 

 

Proof of Proposition 1   

   (i) Feasibility of model (6): 

Let us consider the following envelopment model that is evaluated the upper bound of DMUo: 

 

     
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 (7) 

where  U

o 
  and 0, 1,..., ,j j n   are the decision variables at α. The above model has at least 

one feasible solution as follows: 
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j j n j o












  

 

Hence, model (7) always has a feasible solution. If   
*

*,U

o j
  , 1,...,j n , is an optimal solution 

of (7) for DMUo, the inequality constraints of model (7) can be transformed into the following 

equality form: 

     
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
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Obviously, the above constraints are the same as the constraints of model (6) when 

*, 1,...,j j j n  
 
and it leads to the following feasible solution to model (6):  

*, 1,..., ,

, 1,..., ;

, 1,..., .
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s i m
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   (ii) Non-negativity of the optimal objective function value of model (6): 
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The proof is trivial. 

   (iii) Boundedness of the optimal objective function value of model (6): 

Let  * * *, 1,..., ; , 1,..., ; , 1,...,j i rj n s i m s r s      be the optimal solution of (6). The proof is by 

contradiction.  

Assume that the optimal objective function value of model (6) is unbounded. This implies that 

there exists at least one unbounded value in  * *, 1,..., , , 1,...,i rs i m s r s   . Without loss of 

generality, assume that 
*

ts   . Thus, the following relation follows from the second set of 

constraints of model (6) 

   * *

1

y .
n

U U

t j tj to

j

s y






     

Since   , 1,..., ,
U

tjy j n


 is bounded, at least one 
*, 1,...,j j n   is unbounded. Let 

*

h    and its 

substitution into the first constraint of model (6) is   

 

 

The left hand side of the above equation is infinity (unbounded) while its right hand side is 

bounded which is a contradiction and completes the proof. ■ 
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Appendix B 

 

Proof of Proposition 2   

   (i) Feasibility of model (8): 

Model (8) is solved for those DMUs whose upper efficiency scores are unity (100%), i.e., 

belonging to set E. Model (5-2) calculates the upper efficiency score and the solution set is non-

empty as proven by the following constructive proof. Consider the following point: 
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Let   
*

* *; , 1,..., ; , 1,...,U

o r iu r s v i m


   be the optimal solution of (5-2) for DMUo, thus, we 

have: 
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Since DMUo belongs to set E,    
*

*

1

1
s

UU

o r ro

r

u y





  . It implies that the optimal solution of 

(5-2) is a feasible solution for (8). 

   (ii) Non-negativity of the optimal objective function value of model (8): 

The proof is trivial. 

   (iii) Boundedness of the optimal objective function value of model (8): 

Let  * *, 1,..., ; , 1,...,i rv i m u r s   be the optimal solution of (8). The proof is by contradiction.  

Let the optimal objective function value of model (8) is unbounded. This implies that at least one 

optimal variable is infinity. Without loss of generality, assume that 
*

tu   . Thus, we have 
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The above constraint is contradicted with the first constraint,  
1

1,
s

U

r ro

r

u y




 and it completes 

the proof. ■  
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Appendix C 

Proof. A DMU in class E  is such that     
1

n
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io j ij
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x x
 
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 for at least one i, or 
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ro j rj
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y y
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
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  for at least one r. Thus, constraint 1 and/or constraint 2 of (9) are violated 

and the problem has no feasible solution. ■ 
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Appendix D 

Proof. Let us first introduce the dual of model (4-2) to prove this proposition as: 

     

     

1

1

min

. . , 1,..., ,

, 1,..., ,

0, 1,..., .

U

o

n
U L LU

j ij o io o io

j
j o

n
L U U

j rj o ro ro

j
j o

j

s t x x x i m

y y y r s

j n

 

 



  

 









  

  

 




  

Suppose that a DMUo is in class E . Due to the inefficiency of DMUo, 
* 0o 

 
and 

*0 1U

o 
 

in the optimal solution of model (11). Therefore, the constraints of (11) can be converted to 

   

   

*

1

*

1

, 1,..., ,

, 1,..., ,

n
U L

j ij io

j
j o

n
L U

j rj ro

j
j o

x x i m

y y r s
















 



  






 

which is equivalent to the following slack-variable formulation: 

   

   

*

1

*

1

, 1,..., ,

, 1,..., ,

n
U L

j ij i io

j

n
L U

j rj r ro

j

x s x i m

y s y r s


















  



   






 

Consequently, 
*( , , )j i rs s  

 
is a feasible solution for model (9). ■ 
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Appendix E 

Proof. The use of 
v

i  and 
u

r  as the lower bounds for the weights in model (4-2) cannot 

guarantee feasibility. According to Step 3 of the Khoshfetrat and Daneshvar (2011) method, we 

need to individually solve )S (m s  12
 models (10) for calculating the lower bounds of the input 

and output weights, 
v

i  and 
u

r  that are incorporated into model (4-2). Due to solving 

)S (m s   
 
models without interacting with each other, it is possible that dual weights

 
v

i iv 

 u

r ru   jeopardize the feasibility. We prove this infeasibility problem simply by existence, 

using the numerical example in Khoshfetrat and Daneshvar (2011, p.343). C, F and H are the 

weakly efficient units and that ε for v1, u1 and u2 are set as 0.1, 0.2 and 0.1, respectively
13

. The 

corresponding upper efficiency bound of model (4-2) is infeasible for all DMUs with the given ε 

for the weights. ■ 

 

 

  

                                                 
12

 S
 
is the number of members in set S. 

13
 This result is reported in Khoshfetrat and Daneshvar (2011) although the method is not able to reveal weakly 

efficient DMUs. 
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Appendix F 

$ONTEXT 

This program is written by Hatami - Marbini et al. as a part of the paper  

The Role of Multiplier Bounds in Fuzzy Data Envelopment Analysis  

$OFFTEXT 

 

SET 

J "NUMBER OF DMUS"/1*8/  

I "NUMBER OF INPUTS"/I1*I1/  

O "NUMBER OF OUTPUTS" /O1*O2/  

H           /1*1/  

KS         / 1 * 5 /       ;  

 

ALIAS (J,L);  

 

PARAMETERS 

XLO(I)  

XMO(I)  

XUO(I)  

YLO(O)  

YMO(O) 

YUO(O) 

K;  

 

TABLE XL(J,I) "THE MATRIX OF INPUTS"  

          I1  

1         1  

2         1  

3         1  

4         1  

5         1  

6         1 

7         1  

8         1;  

TABLE XM(J,I) "THE MATRIX OF INPUTS"  

          I1  

1         1  

2         1  

3         1  

4         1  

5         1  

6         1  

7         1  

8         1;  

TABLE XU(J,I) "THE MATRIX OF INPUTS"  

          I1  

1         1  

2         1  

3         1 

4         1  

5         1  

6         1  

7         1  

8         1;  

TABLE YL(J,O)   " THE MATRIX OF OUTPUTS "  

          O1       O2  
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1         1        1  

2         5        1  

3         4.5      5  

4         7.5      3  

5         2        5  

6         4.5      0.5  

7         0.5      6  

8         7.5      0.25;  

TABLE YM(J,O)   " THE MATRIX OF OUTPUTS "  

          O1       O2  

1         3        3  

2         7        3  

3         5.5      6  

4         8.5      4  

5         3        7  

6         5.5      1.5  

7         1.5      8 

8         8.5      0.75;  

TABLE YU(J,O)   " THE MATRIX OF OUTPUTS "  

          O1       O2  

1         5        5  

2         11       4  

3         6.5      9  

4         9.5      6  

5         4        10  

6         6.5      4.5  

7         2.5      9  

8         9.5      2.25;  

 

TABLE DD(H,O)   " THE MATRIX OF OUTPUTS "  

     O1               O2  

1    0                0;  

 

TABLE BB(H,I)   " THE MATRIX OF OUTPUTS "  

     I1  

1    0  ;  

 

VARIABLES 

UO(O) 

VI(I)  

EFF 

TET 

SO(O) 

SI(I)  

LAN(J)  

STAR; 

 

FREE VARIABLE 

UO 

VI  

EFF 

SUMATIONSLACK 

EPSILON;  

 

POSITIVE VARIABLE  

SO 

SI  
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LAN;  

 

EQUATIONS 

OBJ1 

OBJ2 

OBJ3 

OBJ4 

CON1 

CON2 

CON3 

CON4 

CON5 

CON6 

CON7 

CON8 

CON9 

CON10 

CON11 

CON12; 

 

OBJ1..        EFF=E= SUM(O,UO(O)*(K*YMO(O)+(1 - K)*YUO(O)));  

CON1..        SUM(I,VI(I)*(K*XMO(I)+(1 - K)*XLO(I)))=E=1;  

CON2(J)..     SUM(O,UO(O)*(K*YM(J,O)+(1 - K)*YU(J,O))) -

SUM(I,VI(I)*(K*XM(J,I)+(1 - K)*XL(J,I)))=L=0;  

CON3(I)..     VI(I)=G=SUM(H,BB(H,I));;  

CON4(O)..     UO(O)=G=SUM(H,DD(H,O));  

OBJ2..        TET=E=STAR;  

OBJ3..        SUMATIONSLACK=E= SUM(O,SO(O))+SUM(I,SI(I));  

CON5(O)..     SUM(J,LAN(J)*(K*YM(J,O)+(1 - K)*YU(J,O))) - SO(O)=E=(K*YMO(O)+(1 -

K)*YUO(O)) ;  

CON6(I)..     SUM(J,LAN(J)*(K*XM(J,I)+(1 -

K)*XL(J,I)))+SI(I)=E=(TET.l)*(K*XMO(I)+(1 - K)*XLO(I)) ;  

CON7(I)..     SUM(J,LAN(J)*( K*XM(J,I)+(1 -

K)*XL(J,I)))+SI(I)=E=STAR*(K*XMO(I)+(1 - K)*XLO(I)) ;  

OBJ4..        EPSILON=E=SUM(O,UO(O))+SUM(I,VI(I));  

CON8..        SUM(I,VI(I)*(K*XMO(I)+(1 - K)*XLO(I)))=E=1;  

CON9..        SUM(O,UO(O)*(K*YMO(O)+(1 - K)*YUO(O)))=E=1;  

CON10(J)..    SUM(O,UO(O)*(K *YM(J,O)+(1 - K)*YU(J,O))) -

SUM(I,VI(I)*(K*XM(J,I)+(1 - K)*XL(J,I)))=L=0;  

CON11(I)..    VI(I)=G=0;  

CON12(O)..    UO(O)=G=0;  

MODELS        UPPEREFFICIENCY_L /OBJ1,CON1,CON2,CON3,CON4/  

              TETASTAR_L /OBJ2,CON5,CON7/  

              ADITIVE_L /OBJ3,CON5,C ON6/ 

              EPSILON_L/OBJ4,CON8,CON9,CON10,CON11,CON12/;  

 

FILE  EPSILON_ModelS /RESULT_I.TXT/;  

 

PUT EPSILON_ModelS;  

k=- 0.25;  

PUT /;  

LOOP (KS,  

     PUT ' --------------------------------------------------------------------

-------- '/;  

     PUT ' Alpha=  ';  

 

     K=K+0.25;  
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     PUT K:5:2 /;  

     PUT " --------------------------------------------------------------------

-------- "/;  

 

PUT 'UPPER EFFICIENCY Model(5 - 2)'/;  

PUT @5'Efficiency', @15'Input - weights', @30'Output - weights'/;  

PUT @12'EFF', @22'V(I1)', @30'U(O1)', @40'U(O2)'/;  

 

PUT "_____________________________________________________________";  

PUT /;  

 

LOOP (L,  

LOOP (I,XLO(I)=XL(L,I));  

LOOP (I,XMO(I)=XM(L,I));  

LOOP (I,XUO(I)=XU(L,I));  

LOOP (O,YLO(O)=YL(L,O));  

LOOP (O,YMO(O)=YM(L,O));  

LOOP (O,YUO(O)=YU(L,O));  

 

SOLVE  UPPEREFFICIENCY_L  USING LP MAXIMIZING EFF;  

 

PUT L.TL:5;  

PUT EFF.L:10:3;  

LOOP(i,put vi.L(i):10:3);  

LOOP (O,put uo.L(o):10:3);  

PUT /;  

DISPLAY EFF.L;  

);  

PUT //;  

PUT 'ADITIVE_L model(6)'/;  

PUT @6'Sum',@19'Input - Excess', @35'Output - Shortfall'/;  

PUT @6'Sumation', @18'si(i1)', @27'so(o1)', @36'so(o2)'/;  

 

PUT "______________________________________________________________";  

PUT /;  

 

LOOP (L,  

LOOP (I,XLO(I)=XL(L,I));  

LOOP (I,XMO(I)=XM(L,I));  

LOOP (I, XUO(I)=XU(L,I));  

LOOP (O,YLO(O)=YL(L,O));  

LOOP (O,YMO(O)=YM(L,O));  

LOOP (O,YUO(O)=YU(L,O));  

 

SOLVE TETASTAR_L USING LP MINIMIZING TET;  

 

SOLVE ADITIVE_L USING LP MAXIMIZING SUMATIONSLACK;  

 

PUT l.tl:6;  

PUT TET.l:6:3;  

LOOP (i,Put si.l(i):9:3);  

LOOP (o,Put so. l(o):9:3);  

PUT /;  

);  

PUT /;  

DISPLAY SUMATIONSLACK.l;  

PUT //;  
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);  

k=- 0.25;  

PUT /;  

LOOP (KS,  

     PUT ' --------------------------------------------------------------------

-------- '/;  

     PUT ' Alpha=  ';  

 

     K=K+0.25;  

     PUT K:5:2 /;  

     PUT " --------------------------------------------------------------------

-------- "/;  

 

PUT 'EPSILON_I Model(8)'/;  

PUT @10'Sum', @15'Input - weights', @30'Output - weights'/;  

PUT @10'TETA', @22'V(I1)', @30'U(O1)', @40'U(O2)'/;  

 

PUT "________________________________ _____________________________";  

PUT /;  

 

 

LOOP (L,  

LOOP (I,XLO(I)=XL(L,I));  

LOOP (I,XMO(I)=XM(L,I));  

LOOP (I,XUO(I)=XU(L,I));  

LOOP (O,YLO(O)=YL(L,O));  

LOOP (O,YMO(O)=YM(L,O));  

LOOP (O,YUO(O)=YU(L,O));  

 

SOLVE  EPSILON_L  USING LP MAXIMIZING EPSILON;  

PUT L.TL :5;  

PUT EPSILON.L:10:3;  

LOOP (i,put VI.L(i):10:3);  

LOOP (O,put UO.L(o):10:3);  

PUT /;  

DISPLAY EPSILON.L;  

);  

PUT //;  

 );  
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Figure 1. The proposed framework. 

Step 1 

 

 

Step 3 

 

 

Step 4 

 

Obtain the upper efficiencies of the DMUs using (5-2) 

Step 2 

 

 Determine the DMUs in E, F, NE and NF classes using 

model (6) 

Calculate the lower bounds of input and output weights 

using the proposed approach 

Re-obtain the upper efficiencies of the DMUs in sets F 

and NF using model (5-2) with respect to 
v

i and 
u
r  for 

weights 
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Figure 2. Frontiers by Khoshfetrat and Daneshvar (2011), Despotis and Smirlis (2002) and Wang 

et al. (2005). 
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Figure 3. The proposed output set of the numerical example for α=0.5. 
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Table 1. Input and output data for eight DMUs  
DMU Input Output 1 Output 2 

1 (1,1,1) (1,3,5) (1,3,5) 

2 (1,1,1) (5,7,11) (1,3,4) 

3 (1,1,1) (4.5,5.5,6.5) (5,6,9) 

4 (1,1,1) (7.5,8.5,9.5) (3,4,6) 

5 (1,1,1) (2,3,4) (5,7,10) 

6 (1,1,1) (4.5,5.5,6.5) (0.5,1.5,4.5) 

7 (1,1,1) (0.5,1.5,2.5) (6,8,9) 

8 (1,1,1) (7.5,8.5,9.5) (0.25,0.75,2.25) 
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Table 2. Interval data of the DMUs with regards to different α-level 
DMU α Input Output 1 Output 2 

1 0 1 [1, 5] [1, 5] 

 0.25 1 [1.5, 4.5] [1.5, 4.5] 

 0.5 1 [2, 4] [2, 4] 

 0.75 1 [2.5, 3.5] [2.5, 3.5] 

 1 1 [3, 3] [3, 3] 

2 0 1 [5, 11] [1, 4] 

 0.25 1 [5.5, 10] [1.5, 3.75] 

 0.5 1 [7.5, 9] [2, 3.5] 

 0.75 1 [6.5, 8] [2.5, 3.25] 

 1 1 [7, 7] [3, 3] 

3 0 1 [4.5, 6.5] [5, 9] 

 0.25 1 [4.75, 5.75] [5.25, 8.5] 

 0.5 1 [5, 6] [5.5, 7.5] 

 0.75 1 [5.25, 5.75] [5.75, 6.75] 

 1 1 [5.5, 5.5] [6, 6] 

4 0 1 [7.5, 9.5] [3, 6] 

 0.25 1 [7.75, 9.25] [3.25, 5.5] 

 0.5 1 [8, 9] [3.5, 5] 

 0.75 1 [8.25, 8.75] [3.75, 4.5] 

 1 1 [8.5, 8.5] [4, 4] 

5 0 1 [2, 4] [5, 10] 

 0.25 1 [2.25, 3.75] [5.5, 9.25] 

 0.5 1 [2.5, 3.5] [6, 8.5] 

 0.75 1 [2.75, 3.25] [6.5, 7.75] 

 1 1 [3, 3] [7, 7] 

6 0 1 [4.5, 6.5] [0.5, 4.5] 

 0.25 1 [4.75, 6.25] [0.75, 3.75] 

 0.5 1 [5, 6] [1, 3] 

 0.75 1 [5.25, 5.75] [1.25, 2.25] 

 1 1 [5.5, 5.5] [1.5, 1.5] 

7 0 1 [0.5, 2.5] [6, 9] 

 0.25 1 [0.75, 2.25] [6.5, 8.75] 

 0.5 1 [1, 2] [7, 8.5] 

 0.75 1 [1.25, 1.75] [7.5, 8.25] 

 1 1 [1.5, 1.5] [8, 8] 

8 0 1 [7.5, 9.5] [0.25, 2.25] 

 0.25 1 [7.75, 9.25] [0.375, 1.875] 

 0.5 1 [8, 9] [0.5, 1.5] 

 0.75 1 [8.25, 8.75] [0.625, 1.125] 

 1 1 [8.5, 8.5] [0.75, 0.75] 
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Table 3. The upper bound of the efficiencies for eight DMUs 

DMU α=0 α=0.25 α=0.5 α=0.75 α=1 

1 0.645 0.617 0.587 0.554 0.517 

2 1.000 1.000 1.000 0.914 0.824 

3 1.000 1.000 1.000 1.000 1.000 

4 1.000 1.000 1.000 1.000 1.000 

5 1.000 1.000 1.000 1.000 0.971 

6 0.710 0.678 0.667 0.657 0.647 

7 0.900 0.946 1.000 1.000 1.000 

8 0.864 0.925 1.000 1.000 1.000 
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Table 4. The non-zero results of model (6) for DMUs in set F at different α-level  

α-level DMU s
1

+
 1s


 2s  

α=0.5 2 0 0 1.5 

α=0.5 7 0 1.5 0 

α=0.5 8 0 0 3.5 

α=0.75 8 0 0 3.375 

α=1 8 0 0 3.25 
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Table 5. The non-zero results of model (6) for DMUs in set NF at different α-level 

α-level DMU s
1

+
 1s


 2s  

α=0 7 0 1.1 0 

α=0 8 0 0 1.205 

α=0.25 7 0 1.297 0 

α=0.25 8 0 0 1.594 

α=0.5 6 0 0 0.333 

α=0.75 2 0 0 0.864 

α=0.75 6 0 0 0.707 

α=1 2 0 0 0.294 

α=1 6 0 0 1.088 
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Table 6. The lower bounds of weights  
DMU 

1
v  1

u  2
u  

α=0 1.000 0.034 0.054 

α=0.25 1.000 0.037 0.037 

α=0.5 1.000 0.040 0.080 

α=0.75 1.000 0.038 0.090 

α=1 1.000 0.057 0.103 
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Table 7. The upper bound of the efficiencies for eight DMUs 
DMU α=0 α=0.25 α=0.5 α=0.75 α=1 

1 0.645 0.617 0.587 0.554 0.517 

2 1.000 1.000 0.880 0.837 0.793 

3 1.000 1.000 1.000 1.000 1.000 

4 1.000 1.000 1.000 1.000 1.000 

5 1.000 1.000 1.000 1.000 0.971 

6 0.710 0.678 0.640 0.594 0.535 

7 0.863 0.898 0.940 1.000 1.000 

8 0.797 0.866 0.720 0.696 0.665 

 

 

 


